
Tim Hempel 
Noé & Clementi Groups 
Department of Mathematics and Computer Science 
Department of Physics

Markov models 
for molecular dynamics 

Markov School 2022 Slides by Jan-Hendrik Prinz, Simon Olsson & Tim Hempel



MSM Theory, Markov School 2022 2

Conformational dynamics &  
Markov state models 
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Peptide dynamics

MD simulation of n-Butane 

(14 atoms)

The peptide shows metastable 
dynamics (color-coded).

Example courtesy of JH Prinz
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Simplified model n-Butane

Definition of metastable sets simplifies the 
dynamics substantially 

-> transitions between „macro states“
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Markov State Model of n-Butane

This is a matrix of conditional jump probabilities between macro states. 

It is called an MSM transition matrix between metastable sets.
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Markov State Model of n-Butane

How did we get there? 
‣ Identify metastable states („assign 

colors“) 

‣ Estimate the transition probabilities.



MSM Theory, Markov school 2022 7

Markov processes
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Paths in state space

Points x in state space Ω correspond to conformations.

A trajectory is a path in state space.
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Paths in state space

Only changes between long-living sets (color-coded) are interesting for us 

-> metastability
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Observations as stochastic process

View MD simulation as realization of a stochastic process 

in a probability space. 

State spacetime
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Observations as stochastic process

View MD simulation as realization of a stochastic process 

in a probability space.  

We assume the probability space to be „nice“, such that continuous transition 
probability function can be defined.

State spacetime
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Modeling the density

Describe ensembles of configurations in Ω by a probability function

Single Ensemble Density 

Figure courtesy of JH Prinz
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Modeling the dynamics

Assumption: The dynamics is Markovian 

‣ there is no memory

‣ We can write a transition matrix with 
conditional probabilities to model the 
system dynamics 

‣ Chapman-Kolmogorov property connects 
jump probabilities for different lag times τ

P(k ⋅ τ) = P(τ)k
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Assumptions I

Irreducibility 
All states in state space can be reached from another in finite time. 

‣ ensures unique equilibrium probability π 

Ergodicity 
‣ everything is connected („all states are accessible“) 

‣ no cyclic dynamics („all states mix“)

Stationary distribution of the Markov model
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Propagator

Define the propagator as an operator that transports probability distributions in time

Pτ 

Lag time τ

time t time t+τ

Example courtesy of JH Prinz
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Example dynamics

Simple Brownian dynamics in a 1D potential 

Potential landscape U(x) shows 4 distinct basins (metastable sets)
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Lagtime dependence

The propagator depends on the chosen lag time
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Lagtime dependence

The propagator depends on the chosen lag time

4 metastable sets {A}, {B}, {C}, {D}



MSM Theory, Markov school 2022 19

Lagtime dependence

The propagator depends on the chosen lag time

3 metastable sets {A}, {B}, {C, D}
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Lagtime dependence

The propagator depends on the chosen lag time

2 metastable sets {A, B}, {C, D}
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Lagtime dependence

The propagator depends on the chosen lag time

1 metastable set {A, B, C, D}
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Eigenspectrum of the propagator

Eigenvalues 

‣ The first eigenvalue is always 1 

‣ All other eigenvalues are < 1 

The first eigenvector (with eigenvalue 1) corresponds to the stationary distribution 
that is often denoted by a π. 

First left eigenvector

First right eigenvector
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Eigenspectrum of the propagator

Eigenvalues 

Chapman-Kolmogorov implies exponential decay of eigenvalues with lag time

Implied timescales
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Eigenspectrum of the propagator
1 state2 states3 states4 states
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Assumptions III

The propagator can be approximated using only a finite number m < M of processes 
with non-zero eigenvalues, i.e. 

such that the dynamics can be written as 

„The fast processes have decayed“

If the eigenvalue spectrum has a gap, a lag time τ can be chosen to fulfill this 
assumption.
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Eigenspectrum of the propagator

Separation into eigenvector/eigenvalue pairs

Sign structure indicates 
Metastable states

Eigenfunctions                        timescales
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Markov State Models

From continuous state space to a finite set of states 

‣ everything we learnt for continuous models is also true for discrete MSMs 

How to construct a simple MSM from data in a full continuous state space? 

Prinz, JH., Wu, H., Sarich, M., Keller, BG., Senne, M., Held, M., Chodera, JD., Schütte, 
C. and Noé, F. Markov models of molecular kinetics: generation and validation.  
 J. Chem. Phys. 134, 174105 (2011).  
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Estimation

How to construct an MSM from simulation data?
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Discretization

Example of realization of a Markov process
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Counting 
transitions
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Count matrix

Generate a Markov model from discretized time series by counting transitions. In this 
example: 

Count matrix:
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Likelihood

Given the transition probabilities of an MSM, we can compute the observation 
probability for a full (discrete) trajectory: 

Naive approach: Find the MSM that has the highest likelihood given the observed 
data 

-> Maximum Likelihood Estimator (MLE)
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Analytic solution

Given the constraints of the MSM transition matrix 

Find an analytic expression for the MLE 

Using Lagrange multipliers

row-normalized transition counts
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MLE transition matrix

Compute transition matrix from the count matrix to parametrize the simple 4 state 
MSM. 

Transition matrix:

The timescales of projected models are always underestimated!

Djurdjevac, N., Sarich, M. & Schütte, C. Estimating the eigenvalue error of Markov State Models. Multiscale Model. Sim. 
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Lagtime dependence

Increasing the lagtime (use every n-th step) when counting will improve the 
estimation of the timescales 

Count matrix at lagtime 100:

We have to choose the lagtime such that the 
MSM implied timescales are converged.
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Assumptions II

Detailed balance („microscopic reversibility“) 

‣ allows to define a meaningful scalar product 

‣ Propagator is symmetric w.r.t. stationary distribution-weighted scalar product

In equilibrium, there is no net flux of particles, 
i.e. we cannot draw energy from the system
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Reversible dynamics

MLE estimate does not necessarily obey detailed balance. We can add a detailed 
balance constraint 

There is no analytic solution for this estimator but it can be solved iteratively. The 
final solution is a model that obeys detailed balance and maximizes the likelihood 
under that constraint.
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Example dynamics
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Example dynamics
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Problems

Observations in the projected (discretized) space are often non-Markovian 

‣ MSM not the most appropriate choice to express the dynamics of a non-Markovian 
time series 

But 

‣ We don’t want to compress the dynamics into a transition matrix, we want to 
model a system 

So 

‣ Ensure that the observations are „as Markovian as possible“ 
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Validation measures

Implied timescales test
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Validation measures

Chapman-Kolmogorov equation 

Compare the evolution in the model with the data

P(τ)k = P(k ⋅ τ)
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Scheme for generation

‣ use a fine enough discretization and construct a large transition matrix 

‣ check implied timescales convergence and select a lag time 

‣ use dominant eigenvectors to estimate the metastable subsets 
‣ use metastable sets as discretization and construct a small metastable transition 

matrix 
‣ validate the model using Chapman-Kolmogorov test
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Example workflow



MSM Theory, Markov school 2022 44

Example workflow

P(k ⋅ τ) = P(τ)k
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Example workflow
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Error estimation

‣ besides the MLE estimate, other MSMs can lead to the same observation 

‣ Bayes’ rule allows to find the probability of a model given the observations 

‣ Likelihood from before (MLE): 

‣ introduce prior information

P(xi, . . . , xt | P ) = p(C | P ) /
nY

i,j=1

p
cij
ij

p(P | C) / p(C | P )p(P )

The prior can encode useful constraints, e.g. reversibility, fixed stationary distributions, sparsity etc.
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Bayesian inference of MSMs

‣ MCMC sampling on transition matrix 

‣ yields a set of transition matrices 

‣ we can estimate model confidence by 
evaluating properties on all sampled 
transition matrices

(1) 
Trendelkamp-Schroer, B.; Wu, H.; Paul, F.; Noé, F. Estimation and Uncertainty of Reversible Markov Models. The Journal of Chemical Physics 
2015, 143 (17), 174101. https://doi.org/10.1063/1.4934536.

𝔼( f (P)) ≈
1
N ∑

P∼ℙ(P|x1,…xt)

f (P)

Figure courtesy of S Olsson

https://doi.org/10.1063/1.4934536
https://doi.org/10.1063/1.4934536
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Analysis
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Target properties

We can compute 

‣ equilibrium properties (observable averages) 

‣ relaxation timescales (eigenvalues) 

‣ dominant processes (eigenvectors) 

‣ stationary distribution / equilibrium distribution (first normalized eigenvector) 

‣ metastable sets (Eigenvectors / PCCA) 

‣ correlation functions 

‣ mean first passage times 

‣ transition path probabilities 
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PCCA++

Idea: find metastable sets from the eigenvectors. 

‣ sign structure of the right eigenvectors are used for a „spectral clustering“

Röblitz, S. & Weber, M. Fuzzy spectral clustering by PCCA+: application to Markov state models and data 
classification. Adv Data Anal Classif 7, 147–179 (2013) 
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Dynamical fingerprints

Idea: Relate relaxation experiments to computational ones by computing a 
dynamical spectrum 

Noé, F. et al. Dynamical fingerprints for probing individual relaxation 
processes in biomolecular dynamics with simulations and kinetic 
experiments. Proc. Nat. Acad. Sci. USA 108, 4822–4827 (2011). 
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Path properties

Compute path probabilities, e.g., 
for folding of a protein 

Noé, F., Schütte, C., Vanden-Eijnden, E. & Weikl, 
T. R. Constructing the equilibrium ensemble of 
folding pathways from short off-equilibrium 
simulations.  Proc. Nat. Acad. Sci. USA 106, 
19011–19016 (2009). 
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Binding/unbinding kinetics

Model binding kinetics of e.g. 
protein-protein dissociation, 
determination of dissociation 
constant  

Plattner, N.; Doerr, S.; Fabritiis, G. D.; Noé, F. Complete Protein–Protein Association 
Kinetics in Atomic Detail Revealed by Molecular Dynamics Simulations and Markov 

Modelling. Nature Chemistry 2017, 9 (10), 1005. https://doi.org/10.1038/nchem.2785.

https://doi.org/10.1038/nchem.2785
https://doi.org/10.1038/nchem.2785


Binding process - 100 microseconds

Plattner, Doerr, De Fabritiis, Noé 
Nature Chemistry 9, 1005 (2017)
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Thanks for your attention


