Tim Hempel Noé & Clementi Groups Department of Mathematics and Computer Science Department of Physics

Markov models for molecular dynamics

Conformational dynamics & Markov state models

Peptide dynamics

MD simulation of n-Butane

(14 atoms)

The peptide shows metastable dynamics (color-coded).

-> transitions between "macro states"

Markov State Model of n-Butane

This is a matrix of conditional jump probabilities between macro states. It is called an MSM transition matrix between metastable sets.

Markov State Model of n-Butane

How did we get there?

- Identify metastable states ("assign colors")
- Estimate the transition probabilities.

	FINAL STATE					
	JUMP PROBABILITY PER FRAME	•	*****	ACCE		
	🎸 🔥	97 %	1%	2 %		
INITIAL STATE	State B	2 %	94 %	4%		
	and the second s	3 %	5 %	92 %		

Markov processes

Points x in state space Ω correspond to conformations.

A trajectory is a path in state space.

Only changes between long-living sets (color-coded) are interesting for us -> metastability

Observations as stochastic process

View MD simulation as realization of a stochastic process

in a probability space.

Observations as stochastic process

View MD simulation as realization of a stochastic process

$$x : t \in \mathbb{R}^+ \mapsto x_t \in \Omega$$

time State space

in a probability space.

We assume the probability space to be "nice", such that continuous transition probability function can be defined.

$$\int_{\mathcal{A}} dy p_{\tau}(x,y) = \mathbb{P}[x_{t+\tau} \in \mathcal{A} | x_t = x], \quad \forall \mathcal{A} \in \mathcal{B}(\Omega), \, \forall t \ge 0$$

Modeling the density

Describe ensembles of configurations in Ω by a probability function

$$p: x \in \Omega \mapsto p(x) \in \mathbb{R}_0^+, \quad \int_{\Omega} dx p(x) = 1$$

Modeling the dynamics

Assumption: The dynamics is Markovian

there is no memory

 $\mathbb{P}[x_{t+\tau} \in A | x_{t_1}, \dots, x_t = x] = \mathbb{P}[x_{t+\tau} \in A | x_t = x], \, \forall A \subset \Omega, \, \forall t \ge 0$

- We can write a transition matrix with conditional probabilities to model the system dynamics
- Chapman-Kolmogorov property connects jump probabilities for different lag times τ

$$p_{\tau_1+\tau_2}(x,A) = \int_{\Omega} dy p_{\tau_1}(x,y) p_{\tau_2}(y,A), \quad \forall A \subset \Omega.$$
$$P(k \cdot \tau) = P(\tau)^k$$

Assumptions I

Irreducibility

All states in state space can be reached from another in finite time.

```
\forall x \in \Omega, A \subset \Omega, \exists t < \infty \text{ s.t. } p_t(x, A) > 0
```

 \bullet ensures unique equilibrium probability π

Ergodicity

- everything is connected ("all states are accessible")
- no cyclic dynamics ("all states mix")

$$\lim_{T\to\infty} T^{-1} \int_0^T \mathrm{d}t f(x_t) = \int_\Omega \mathrm{d}x \,\pi(x) f(x)$$

Stationary distribution of the Markov model

Propagator

Define the propagator as an operator that transports probability distributions in time

$$\mathbf{p}_{t+\tau}(x) = [\mathbf{P}_{\tau} \mathbf{p}_t](x) = \int_{\Omega} \mathbf{d}_y \mathbf{p}_{\tau}(y, x) \mathbf{p}_t(y)$$

Example dynamics

Simple Brownian dynamics in a 1D potential

$$\gamma \, \mathrm{d} x_t = -\nabla U(x_t) \mathrm{d} t + \sigma \mathrm{d} W_t$$

Potential landscape U(x) shows 4 distinct basins (metastable sets)

The propagator depends on the chosen lag time

The propagator depends on the chosen lag time

4 metastable sets {A}, {B}, {C}, {D}

The propagator depends on the chosen lag time

3 metastable sets {A}, {B}, {C, D}

The propagator depends on the chosen lag time

2 metastable sets {A, B}, {C, D}

The propagator depends on the chosen lag time

1 metastable set {A, B, C, D}

Eigenvalues

$$\mathrm{P}_{ au}\,\phi_i=\lambda_i\,\phi_i$$

- The first eigenvalue is always 1
- ▶ All other eigenvalues are < 1

The first eigenvector (with eigenvalue 1) corresponds to the stationary distribution that is often denoted by a π .

Eigenvalues

$$P_{\tau} \phi_i = \lambda_i \phi_i$$

Chapman-Kolmogorov implies exponential decay of eigenvalues with lag time

$$\lambda_i(k\cdot\tau) = \lambda_i^k(\tau)$$

Assumptions III

The propagator can be approximated using only a finite number m < M of processes with non-zero eigenvalues, i.e. $\forall \tau > \tau_{\min}, i > m : \lambda_i(\tau) \approx 0$

such that the dynamics can be written as

$$u_{t+k\tau}(\mathbf{x}) = \mathcal{T}_{\text{slow}}(k\tau) \circ u_t(\mathbf{x}) + \mathcal{T}_{\text{fast}}(k\tau) \circ u_t(\mathbf{x}),$$

$$=\sum_{i=1}^m \lambda_i^k \langle u_t, \phi_i \rangle \psi_i(\mathbf{x}) + \mathcal{T}_{\text{fast}}(k\tau) \circ u_t(\mathbf{x}),$$

If the eigenvalue spectrum has a gap, a lag time τ can be chosen to fulfill this assumption.

Separation into eigenvector/eigenvalue pairs

 $P_{\tau} \phi_i = \lambda_i \phi_i$

Markov State Models

From continuous state space to a finite set of states

• everything we learnt for continuous models is also true for discrete MSMs

How to construct a simple MSM from data in a full continuous state space?

Prinz, JH., Wu, H., Sarich, M., Keller, BG., Senne, M., Held, M., Chodera, JD., Schütte,C. and Noé, F. Markov models of molecular kinetics: generation and validation.J. Chem. Phys. 134, 174105 (2011).

Estimation

How to construct an MSM from simulation data?

Discretization

Example of realization of a Markov process

Count matrix

Generate a Markov model from discretized time series by counting transitions. In this example:

Count matrix:

C _{ij} (1)	A	B	C	D
A	9963	37	0	0
B	22	9974	4	0
C	0	2	9919	79
D	0	0	115	9885

Likelihood

Given the transition probabilities of an MSM, we can compute the observation probability for a full (discrete) trajectory:

$$\mathbb{P}(x_1, \dots, x_t \mid P) = \prod_{k=1}^L p_{x_{k-1}, x_k}$$
$$= p_{x_0, x_1} \cdot \dots \cdot p_{x_L - 1, L}$$
$$= \prod_{ij} p_{ij}^{c_{ij}}$$
$$= p_{11}^{c_{11}} \cdot \dots$$

Naive approach: Find the MSM that has the highest likelihood given the observed data

-> Maximum Likelihood Estimator (MLE)

Analytic solution

Given the constraints of the MSM transition matrix

$$\sum_{j} p_{ij} = 1, \quad \forall i$$

Find an analytic expression for the MLE

$$P^{\text{MLE}} = \underset{P}{\text{argmax}} \prod_{k=1}^{L} p_{x_{k-1}, x_k}$$

Using Lagrange multipliers

$$\hat{p}_{ij} = \frac{\sum_{n=\tau}^{L} \delta(x_{n-\tau} = i, x_n = j)}{\sum_{n=\tau}^{L} \delta(x_{n-\tau} = i)}$$
$$= \frac{\hat{C}_{ij}}{\sum_{j} \hat{C}_{ij}} \quad \text{row-normalized transition counts}$$

MLE transition matrix

Compute transition matrix from the count matrix to parametrize the simple 4 state MSM.

Transition matrix:

P _{ij} (1)	A	B	C	D	projected timescales	original timescales
A	0,9963	0,0037			∞	∞
В	0,0022	0,9974	0,0004		2,746	17,671
C		0,0002	0,9919	0,0079	165	1,610
D			0,0115	0,9885	51	538

The timescales of projected models are always underestimated!

Djurdjevac, N., Sarich, M. & Schütte, C. Estimating the eigenvalue error of Markov State Models. Multiscale Model. Sim.

Increasing the lagtime (use every n-th step) when counting will improve the estimation of the timescales

Count matrix at lagtime 100:

C _{ij} (100)	A	B	C	D	projected timescale s	original timescales
A	9533	477	40	0	∞	∞
B	1644	8014	262	80	15,397	17,671
C	0	40	9025	935	1211	1,610
D	0	0	1366	8634	379	538

We have to choose the lagtime such that the MSM implied timescales are converged.

Assumptions II

Detailed balance ("microscopic reversibility")

 $\pi(x)\mathbf{p}_{\tau}(x,y) = \pi(y)\mathbf{p}_{\tau}(y,x)$

allows to define a meaningful scalar product

$$\langle f,g \rangle_{\pi} = \int \mathrm{d}x f(x)g(x)\pi(x)$$

• Propagator is symmetric w.r.t. stationary distribution-weighted scalar product

In equilibrium, there is no net flux of particles, i.e. we cannot draw energy from the system

Reversible dynamics

MLE estimate does not necessarily obey detailed balance. We can add a detailed balance constraint

$$\pi_i p_{ij} = \pi_j p_{ji}, \quad \forall i, j$$

There is no analytic solution for this estimator but it can be solved iteratively. The final solution is a model that obeys detailed balance and maximizes the likelihood under that constraint.

Example dynamics

Example dynamics

$$t_i = -\tau / \log(\lambda_i)$$

Problems

Observations in the projected (discretized) space are often non-Markovian

 MSM not the most appropriate choice to express the dynamics of a non-Markovian time series

But

• We don't want to compress the dynamics into a transition matrix, we want to model a system

So

• Ensure that the observations are "as Markovian as possible"

Validation measures

Implied timescales test

Validation measures

Chapman-Kolmogorov equation

$$P(\tau)^k = P(k \cdot \tau)$$

Compare the evolution in the model with the data

Scheme for generation

- use a fine enough **discretization** and construct a large transition matrix
- check implied timescales convergence and select a lag time
- use dominant eigenvectors to estimate the **metastable subsets**
- use metastable sets as discretization and construct a small metastable transition matrix
- validate the model using Chapman-Kolmogorov test

Example workflow

Example workflow

validation:

implied time scales convergence

Chapman-Kolmogorow test

Example workflow

Error estimation

- besides the MLE estimate, other MSMs can lead to the same observation
- Bayes' rule allows to find the probability of a model given the observations
- Likelihood from before (MLE):

$$\mathbb{P}(x_i, \dots, x_t \mid P) = p(C \mid P) \propto \prod_{i,j=1}^n p_{ij}^{c_{ij}}$$

introduce prior information

$$p(P \mid C) \propto p(C \mid P)p(P)$$

The prior can encode useful constraints, e.g. reversibility, fixed stationary distributions, sparsity etc.

Bayesian inference of MSMs

- MCMC sampling on transition matrix
- yields a set of transition matrices
- we can estimate model confidence by evaluating properties on all sampled transition matrices

$$\mathbb{E}(f(P)) \approx \frac{1}{N} \sum_{P \sim \mathbb{P}(P|x_1, \dots, x_t)} f(P)$$

Trendelkamp-Schroer, B.; Wu, H.; Paul, F.; Noé, F. Estimation and Uncertainty of Reversible Markov Models. *The Journal of Chemical Physics* **2015**, *143* (17), 174101. <u>https://doi.org/10.1063/1.4934536</u>.

(1)

Analysis

Target properties

We can compute

- equilibrium properties (observable averages)
- relaxation timescales (eigenvalues)
- dominant processes (eigenvectors)
- stationary distribution / equilibrium distribution (first normalized eigenvector)
- metastable sets (Eigenvectors / PCCA)
- correlation functions
- mean first passage times
- transition path probabilities

PCCA++

Idea: find metastable sets from the eigenvectors.

▶ sign structure of the right eigenvectors are used for a "spectral clustering"

Röblitz, S. & Weber, M. *Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification*. Adv Data Anal Classif 7, 147–179 (2013)

Dynamical fingerprints

Idea: Relate relaxation experiments to computational ones by computing a dynamical spectrum

Noé, F. et al. *Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments*. Proc. Nat. Acad. Sci. USA 108, 4822–4827 (2011).

Path properties

Compute path probabilities, e.g., for folding of a protein

"DENATURED" (A) 111 0 11^{1}_{14} 4¹ 9³₃₆ 17^{5}_{26} 7^{1}_{12} trap 11^{1}_{10} 0.25 6 10^{4} 11^{1}_{14} trap 104 7^{2}_{12} 10^{1}_{12} 20 48 7 1 12 0.75 0 - 2/0 - 2 24^{16}_{42} 1 25 0/0trap 22¹⁸ 22¹⁸ 1.0 "NATIVE" (B)

Noé, F., Schütte, C., Vanden-Eijnden, E. & Weikl, T. R. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Nat. Acad. Sci. USA 106, 19011–19016 (2009).

Binding/unbinding kinetics

Model binding kinetics of e.g. protein-protein dissociation, determination of dissociation constant

Plattner, N.; Doerr, S.; Fabritiis, G. D.; Noé, F. Complete Protein–Protein Association Kinetics in Atomic Detail Revealed by Molecular Dynamics Simulations and Markov Modelling. *Nature Chemistry* **2017**, *9* (10), 1005. <u>https://doi.org/10.1038/nchem.2785</u>.

Binding process - 100 microseconds

Plattner, Doerr, De Fabritiis, Noé **Nature Chemistry** 9, 1005 (2017)

Thanks for your attention