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Abstract

We study a scalar, bi-stable reaction-diffusion-convection equation in RY . With
a hyperbolic scaling, we reduce it to a singularly perturbed equation. In the singu-
lar limit, solutions converge to functions which take on only two different values
in bulk regions. We also derive an equation describing the motion of the interface
between the two bulk regions. To the lowest order, the normal speed s(v) of the
interface depends only on the unit normal vector v, where the wave speed s(v) is
determined by nonlinear reaction and convection terms.

When the convection term is even and the reaction term is odd in their argu-
ment, the wave speed s(v) vanishes identically for all directions v. In this situation,
a parabolic scaling reduces the equation to another singularly perturbed equation
for which we also establish convergence of solutions in the singular limit. The sin-
gular limit dynamics is governed by an anisotropic mean curvature flow, in which
the anisotropy comes from the convection term.

Our method of proof for convergence consists of constructing approximate so-
lutions of any order and the comparison principle.

Math Subject Classification: 35B25, 35B40, 35K15
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1 Introduction

1.1 Statement of the Problem

We consider the reaction-diffusion-convection equation
ug + div f(u) = Au+ g(u), (z,t) e RY x (0,7T) (RDC)

in the N-dimensional space, where u = u(z,t) € R, f : R > R¥ isaflux,and g: R — R
a nonlinear reaction term of bistable type. By a hyperbolic scaling (z,t) — (z/e,t/¢),
the equation becomes

w+div f(u) = edu+e7g(w),  (a,t) € RY x (0,T), 1)

where € > 0 is a positive parameter. When € > 0 is small, this is a conservation law
with small viscousity and stiff source term.

Our objective is to describe the dynamics in the singular limit for the scalar multi-
dimensional equation (1). In terms of the original scale in (RDC), the singular limit
e — 0 gives a representation of the large-time behavior of the spatial variation over
large domains in the solutions of (RDC).

Let u® be the unique solution of the Cauchy problem for (1) with initial condition

u(z,0) = ¢(). )
It is our goal to determine the existence and structure of the limiting function

0 : €
t) =1 t
u'(z,t) = lim u'(z,?)

for (z,t) € R x [0, T]. Throughout the paper, we assume that the source term g and the
convective term f satisfy the following conditions.

(H1) (i) The function g belongs to C*°(R) and possesses exactly three zeros u_ < 0 <

gd(u_) <0, ¢'(0)>0, g'(us)<0 (bi-stability of reaction).

(ii) The vector f belongs to C*®(R,RY).

1.2 Existence and uniqueness

Under assumption [(H1), local existence and uniqueness of solutions to either (RDC)
or (1) with fixed € can be shown as follows (see [1] for details). The Cauchy problem

u; = Au+ F(u,Vu) } 3)

u(z,0) = wup(z)
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is considered as an abstract ordinary differential equation
U = ABCU + NF (U)
u(0) = wuy, @)

where u(t) € X = BCyuut(RY), Agc is a realization of A on BCu;¢(RY), the space of
bounded, uniformly continuous functions, and N is the Nemitskii operator associated
with F.

One first shows that Agc is the infinitesimal generator of an analytic semigroup.
By standard arguments, one can then show that (4), and hence (3), has a unique local
solution

u € C([0, T], BCunit (RY)) N C*((0, T}, BCumis (RY))

provided that F € C°(R x RY) has partial derivatives 0F/du and dF/8p; which are
bounded on bounded subsets of R x RY and the initial condition u, is contained in
some interpolation space. For our purposes it will suffice to assume uy € BC?_(RV)
which is contained in the domain D(Agc¢) and therefore also in the interpolation space.

In our situation F'(u, Vu) = g(u)— f'(u)- Vu is continuous and the partial derivatives
OF/0u = g'(u)— f"(u)-Vuand 0F /0p; = — f;(u) are uniformly continuous on bounded
sets if f € C?(R,RY) and g € C'(R).

If F grows at most linearly with respect to |Vu/, then any solution which remains
bounded in the L*-norm is a global classical solution. In our situation, however,
the L*-bound is an easy consequence of the dissipativity condition (H1)-(i) and the
parabolic comparison principle. In particular, this shows that for initial data u, €
BC2,;:(RY) we get classical solutions on the infinite time interval [0, 00).

unif

1.3 Planar Waves

Planar wave solutions to (1) of the form u(z,t) = U(%%==%) satisfy a one-dimensional
ordinary differential equation

U'(z) + (s = f'(U(2) - »)U'(2) + 9(U(2)) =0, zeR ("=d/dz) ®)
which can be written as a first order system

u =V
V= (s~ fT) )V - g(U) ©

This system possesses exactly three stationary points with U € {u_,0,u;} and V = 0.
The linearization at (uv*,0) (v* = u_,0,u,) is

U o=V
V= )~ (s f) V.
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with eigenvalues

PR L  Ca RO RV o { O N e o) )

Hence the two stable zeros u_ and u, always correspond to saddle equilibria of (6).

Using the fact that (6) defines a “rotated vector field” (see [3]), it can be shown that
the unstable manifold of (u_, 0) and the stable manifold of (u, 0) intersect for precisely
one wave speed s(v). In [5] existence and uniqueness of traveling waves have been
established for a class of equations which contains (1). We state the corresponding
result in our situation:

Proposition 1.1 ([5], Theorem 2.4).

(i) There exists a unique wave speed s(v) such that for s = s(v) there is a unique heteroclinic
orbit of (6) connecting (u_,0) (at z = —o0) to (uy,0) (at z = +00).

(if) The wave speed s(v) depends on v as smooth as f'(u) and g(u) do on u.

(iii) The corresponding travelling wave profile Q(z;v), with Q(0;v) = 0, is smooth in (z,v)
and monotone increasing in z.

Once the existence of planar waves is established, it is rather elementary to charac-
terize the wave speeds.

Lemma 1.2. Traveling wave solutions of (6) have the following properties.

(1) The wave speed s(v) of the planar traveling wave satisfies the following two identities:

() sy —u ) = (F(us) — ) v+ | 9(Q(v)) dz

G(u) = Gluy) + [72 Q50 (Qev)) v dz

“+oo
f—oo Q?(z;v) dz
where G is an anti-derivative of g.

(ii) s(v) =

(2) If f is even and g is odd, then Q(z) is odd, Q(—z) = —Q(z), and s(v) = 0 forv € RY
(although we will always consider unit vectors |v| = 1 in the sequel).

Proof: (1) (i) Since Q(z) decays exponentially fast to u_ (resp. u) as z — —oo (resp.
+00), we may integrate the traveling wave equation (5) over R. This yields exactly the
given identity.



(1)(ii) Since the derivatives of the heteroclinic solution @ decay exponentially at
z = +o00, we may multiply equation (5) by ), and integrate from z = —oco to z = +0o0
to get

s(w) / Q(z;v) dz = / 9(Q(1))Qs (3 v) dz + / F(Qz:)) - vQu (2 v)? d.

—0o0

(2) It is easy to verify that the function Q(z) := —Q(—2) satisfies (6) with s = s(v)
begin replaced by s = —s(v) and the same boundary conditions as (z) does. There-
fore, the uniqueness of the solution pair (Q(z), s(v)) for (6) implies s(v) = —s(v) and
Q(z) = Q(z), and hence s(v) = 0 and Q(z) = —Q(—2).

|

Remark 1.3. Characterization (1)(i) is analogous to the well-known Rankine—Hugoniot con-
dition for viscous shocks of conservation laws. The presence of a stiff source results in an addi-
tional term which does depend not only on the asymptotic states but also on the whole “viscous
profile” Q.

We believe that the converse to the statemtent Lemma 1.2 (2) is valid. Namely, if the wave
speed s(v) vanishes identically in all directions v, then f is even and g is odd. However, we
have been unable to prove this statement.

Definition 1.4. A hypersurface M of class C* is a subset of RN which is locally a graph of a
C?-function:

M = {(z1,2,...,2n) ERY; 2y = F(z1,22,...,2n-1)}-

By the principal curvatures of M at a point xq in the direction v (v L, T,, M), we mean
N — 1 eigenvalues k1, ka, . . . , kx 1 Of the symmetric matrix D*F (zy), where xy stands for the
coordinate function in v-dirction, while 1, ...,xn_1 are coordinate functions on T, M, the
tangent plane to M at x,.

The mean curvature of M at a point x is the sum of principal curvatures

H($0)2K1+K2+...+HN_1.

1.4 Main results

We describe dynamics of (1) in singular limits as ¢ —+ 0. Depending on whether or not
the wave speed s(v) identically vanishes, we have to distinguish two cases.

Theorem 1.1. Assume that s(v) # 0. Under the condition (H1), we consider the Cauchy
problem

ui = eAu® — f'(uf) - Vuf + ¢ 1g(uf) } ®)

u®(z,0) = ¢°(x).



Then, there exist a pair of functions uf(z) < uh(z) on RN and a time T > 0 such that if
¢°(z) € BC? (RN ) with

up(z) < ¢°(2) < wg(w),
then the solution u®(z,t) converges to a limit function u®(z,t) = lim._,o u®(z, t) for almost all
(z,t) € RY x [0, T). The limit u°(z,t) is a piecewise constant function taking on only two
values u_ and u,. The bulk regions Q*(t) := {x € RY; u’(z,t) = uy} are separated by a
hypersurface I'(t) which evolves according to the equation

V=s(v),

where V stands for the normal speed of the interface I'(t) and v is the unit normal vector on
['(t) pointing into the bulk region Q7 (t).
Moreover, if the e-dependent interface I'*(t) is defined by

Te(t) = {z € RV | uf(z,¢) = 0},

then its motion is described by

Ve =s(f)+¢ {He(y, Z T, K (y } + O(?). 9)

pyg=1

Here, v° is the unit normal vector to I'*(t), s(v®) the speed of a planar travelling wave prop-
agating in direction v°, H*(y,t) stands for the mean curvature of T*(t) at y € I'*(t), (T;,)
is a symmetric, positive semi-definite matrix depending on (f, g,v*), and KP? is a symmetric
tensor related to the second fundamental form of T°(t).

When f is even and g is odd, Lemma 1.2 implies that s(v) = 0. In this case, a result
analogous to Theorem 1.1 holds for a parabolically scaled version of (8), which is stated
as follows.

Theorem 1.2. Assume that f is even and g is odd. Under the condition (H1), we consider the
Cauchy problem

ui = Auf —e 1 f'(uf) - Vus + e 2g(uf)
10
u*(z,0) = ¢°(x). } (10)
There exist a class of initial functions ¢* and a T > 0, as in Theorem 1.1, such that the solution
uf of (10) has a limit, i.e., u®(z,t) == lim u®(z, t) exists for a.e. (z,t) € RN x [0,T].
E—

The limit u°(z,t) is a piecewise constant function taking on only two values u_ and ..
The regions Q%(t) == {z € RY; u%(x,t) = uy} are separated by a hypersurface T'(t) which
evolves according to the equation

N N
V=H+ Z Tp K™ = Z (Opg + Tpq) K7, (11)
p,g=1 p,g=1



where V' stands for the normal speed of the interface I'(t) and H,T and K are the same as in
Theorem 1.1.

If we consider (1) with suitable initial functions ¢(z), solutions develop internal
layers after time of O(e|loge|) near the zero level set I'y of ¢. Generically, T is of class
C?, and the solution profile would satisfy

ug(z) < u®(z, O(e|logel) < ug(z).

Therefore, from this moment on, our theorems 1.1 and 1.2 apply to this general situa-
tion.

Recently, Fan and Jin [4] have studied (1) in the case of a symmetric flux function
f and an odd source term g. Since s(v) = 0, in this situation, we are in the setting
of Theorem 1.2. The front motion is then driven by some kind of generalized mean
curvature, or, anisotropic curvature.

For f = 0 and symmetric g, our equation (RDC) is the so called Allen-Cahn equa-
tion. The formation and motion of internal layers for

ug = e*Au + g(u)

for 0 < € < 1 have been studied for a long time. For example, in [2] it is shown that
interfaces which have formed move according to mean curvature flow. Their analysis
uses different temporal and spatial scales without separating them completely. Our ap-
proach is therefore closer to the one in [7] for the spatially inhomogeneous Allen-Cahn
equation, where the outer solution and the approximate internal layer are constructed
separately up to any order in ¢. This allows us to show how the convection term in
(RDC) introduces a new type of geometric evolution in the interface equation. The
additional term ) T,,,K?? in (11) has two parts where T is determined by the convec-
tive and reaction terms f and g from the equation and the unit normal vector v of the
interface, while K?? depends on the geometry of the interface.

The paper is organized in the following way: Section 2 deals with the formal con-
struction of the approximate interface equation. In Section 3, we prove our main the-
orems on the convergence. The last section is devoted to explicit computations in the
case that f and g have some special form.

2 The approximate interface equation

In this section, we present an asymptotic expansion method to construct approximate
solutions to (1). The procedure below may look rather formal. However, in §3.1, we
will make it mathematically rigorous. A similar asymptotic expansion is valid for (10),
and modifications needed are explained in §3.2.
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2.1 The outer expansion

We rewrite (1) as
eus +ef'(u) - Vu — 2Au = g(u)

and expand its solutions as follows.
Uout (T, 1) = ud  (z, ) + eul  (2,t) +. ...

Inserting this expansion, (1) leads at zeroth order to the equation

9(tgu(z,t)) = 0.

As we are looking for a solution which takes values close to u_ in one subdomain of
RY and values close to u; on the complement of that set, we choose the following as
our lowest order outer expansion:

0 _f u_ in Q(t),
Ugut (2, ) —{ uy in QF (),

in which Q*(¢) are to be determined. In fact, we will later derive a motion law for the
common boundary T'(¢) of Q*(¢).
Since g does neither depend on z nor on ¢, we get at order ¢ the equation

9 (tou (2, 1) )Ugy (2, 2) = 0
1

which implies ug,,(z,t) = 0 from our assumption ¢'(u+) < 0. For the same reason, all
higher orders vanish as well:

ul i (z,t) =ud (z,t)=...=0.

Therefore, we arrive at the simple outer “expansion”

[ u- forz e Q(t),
Uout(mat) - { Ug forz € Q+(t)

We will assume that 27 (¢) and Q7 (¢) are separated by a smooth hypersurface I'(z).
Close to this interface we expect to have a sharp layer of width O(e). To resolve this
layer we will use a “stretched” variable near I'(¢).

2.2 Interface coordinates

To derive the inner expansion, we will use coordinates adapted to the moving interface.
We want to describe I'(¢) as the image set of some mapping 7. To this end, we set

L(t):={z eRY |z =v(y,t),y € Ty}

8



where T is an (N — 1)-dimensional smooth reference manifold. We assume that the
parametrization v, is smooth and chosen in such a way that

280 070
— L

fori=1,...,N — 1. (12)

We can now parameterize a neighborhood of the surface I'(¢) by coordinates (r,y)
such that

z =y, t) +rv(y,t) = 7(y,t,7)

where v(y,t) is a unit normal vector to I'(¢) at y, or more precisely, at yo(y,t). For
definiteness, we assume throughout that v points into Q" (¢). We also define an -
shifted interface I'(t, ) by

Lt,r):={z=1(yt,r) |y € To}.
Consequences of this definition are the identities

v-v=1, y-@:O fore=1,...,N -1, 1/-@:0,
Oy

s

where “-” stands for the Euclidean inner product.
We now introduce a space-time coordinate transformation:

z =7y, t,r), t=*t.

It is straightforward, but tedious, to write equation (1) in the new coordinates. The
Jacobi matrix for the coordinate transformation is

7= (vt | 2w +rEw ).

This implies that
or ( Yy, )" ) 9
_ T |
- 15 v
a% (—37; + ’I“a—y) ox

vy, t)T
= ®1) T v(y,t) <% —i—r@) v(y,t) (% +r@) —
(% 4 T@) ’ dy dy ) dy dy or

dy Ay

- -
'

_<(1) g(y,or,t) )




where the components of the symmetric metric tensor g are given by

v ovE SN (O(0)t Ak [O(y)t vk
gz(yatar)zz—z—zz +r i —+r i
! dy* oy =\ Oy dy oy oy’

which is the symmetric metric tensor on the r-shifted interface I'(¢,). Consequently,

we have
9
0 N 970 ov 1 0 ”
5 = | Ywt) (a—y+’°a_y) (0 gl(y,r,t)) (a
]

or, equivalently,

where the ¢7* are the entries of ¢!, the inverse matrix of (g jr)- The gradient operator,
therefore, transforms as follows:

The Laplace operator then becomes
0? 0
A= W - H(yata T‘)E + AI‘(taT)a
where H(y,t,r) is the mean curvature of the r-shifted interface I'(¢,r) and Ar(¢,r) is
the Laplace-Beltrami operator on I'(¢, ) acting on functions of y.
Similarly, one can verify that the time derivative transforms as follows:

0 0 0 ) 2 _12
8t oF — (y0)z - )E_(r’/t (Y0)y +7°ve-1)8 By

Dropping the “bar” from t, equation (1) in the new coordinates becomes

ou Oou _,0u
Sr = { (b e + (- o)y + 170 1) g e |

» [ u du .
v {20 >8—+Ar<r,t>u} (1)
~firw 3+ rwils 15 gt
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2.3 The inner expansion

Setting r = £z, equation (1°) becomes

0 = G +lo0): v—f(u)-u]g—jw(u)
+e {—‘;—? — H(O — f'(u)-V } (13)

ou
2 {Ar(t)u — zH(l)g + 2 - Vrgu — 2 (f'(u) : Vg()t&)u) }

+ Zaj’Pj(y, t,2)u

j23

Here, with g% = ¢7*(y, t, 0), tangential gradients are defined by

670 —1 870 ]k
14
vl"(t) oy 2.8 ]kzl ay] (14)
o [dy « M . 0
1 — 0 s
vi"()t) a,r |:8 (yat ’I“)g l(ya ta ’I“):| Z 8@/7 ] s 8—y’“’ (15)
r=0 7,8,0,k=1

where (hy) is the second fundamental form of I'(¢) with respect to v. Moreover, the
curvature terms are defined by H® = H(y, t,0) and

2

9 -1
HY = o —oH(y,t,7) = Y (k;)?, (sum of squared principal curvatures),
1

<.
Il

while AT® = Ar(t,0) is the Laplace-Beltrami operator on I'(t) and P; are differential
operators acting on functions of (y, ¢, z) which we need not use explicitly.
We seek a solution of the form

Uin(2,y,t) = uph (2,9, 1) + euiy (2,4, 8) + . . ..

Substituting this expression into (13), we will determine /, (j > 0) with appropriate
conditions.
At order zero we have to satisfy the equation
82u?n 0 8u?n 0
922 + ((vo)e - v — f'(ugy) - v) 0 + g(ui) =0 (16)

with boundary condition

U (—00) =u_, Uy (+00) =uy.
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¢From Proposition 1.1 we know that for any direction v there is a unique wave speed
s = s(v) such that (16) possesses a monotone heteroclinic orbit from «_ to u,, if and
only if (79): - v = s(v). Therefore, the lowest order interface equation is given by

V=70 v =s(v). (17)

We denote this heteroclinic orbit by Q(z; ) and assume for definiteness that the phase
shift in z is adjusted such that Q(0;v) = 0.

We will assume that the first term of the inner solution is just the heteroclinic wave
profile in the corresponding normal direction with a “phase shift” aq(y, t):

u?n(za Y, t) = Q(Z + aO(y’ t); V(y’ t))

The term ay(y, t) accounts for the fact that we expect the interface I'(¢) to be determined
only up to order O(¢) corresponding to the width of the transition layer. At this stage,
the shift ao(y, t) is not known. We will derive the equation that governs a, in the next
stage of approximation.

At order O(g) we have to satisfy the equation

oud  Pul oul oud
8;1 = W;n + a(z) 6; + B(z)us, — H(y, t,0) 8zm — f'(uf)) - Virgus, (18)

together with the boundary condition
Ulln(—OO) = ulln(+oo) =0,
where

a(z) = s(v)— f'(u) v,
oy Oul

Blz) = 9'(U?n)—f"(uin)-va—;-

Note that this equation has to be considered as an equation for the unknown u}, as
a function of z with y and ¢ playing the role of parameters.

We will now state a condition which guarantees the solvability of this inhomoge-
neous linear second order equation. From this condition we will get an equation for
the evolution of ay.

Rewrite (18) as an inhomogeneous linear second order equation

¢z. + a(2)d; + B(2)p = h(2) (19)
where e o
uin uin
h(z) = W + H(O)W + f'(u?n) . Vp(t)u?n.

The solvability for (19) is summarized as follows.

12



Proposition 2.1. For a given bounded function h(z), the problem (19) has a bounded solution
if and only if the solvability condition

/ Q.(z 4 ag)e”@h(z) dz =0 (20)
is satisfied, where
A@) = [ alr)dr= [ () = Qe + asv)) -v) ar
z+ap

_ /(s(y)—f'(Q(T;l/))-V) dr =: A(z + ag).

0

Moreover, if h(z) decays to zero at an exponential rate, then the corresponding solution of (19)
does have the same property with the following explicit formula.

z+ag ~

—A(z
d)( ) (ya )Qz(z+a0) +Qz Z+a0 / Q ( /Qz ” Z — (lo) dz"dz',

where a(y,t) is any function of the “parameters” (y,t) and the second term is normalized so
that it takes the value 0 for z = —ay.

The proof of this proposition is elementary, and hence omitted.
To translate the condition (20) stated in Proposition 2.1 into information about the
motion of the transition layer, we use the relations

ou? da
o = GErany
ou?

8—; = Q.(2+ag;v)

Vr(t)’lt?n = Q.(z+ ao;v)Vrpao + Qu(z + ag; v)Vrpv

+ Q. (z + ap; V)1

which follow immediately from u) (z,y,t) = Q(z + ao(y, t); ¥(y,t)). They in turn imply
that the inhomogeneous term for (18) is given by

A() = Q- [T 1 HO 4 £1(Q)- Vepao| + Qv+ F1(Q) Q¥

where, here and below, @ is evaluated at z + ao(y, t) unless explicitly stated otherwise.

13



Inserting this into the first order solvability condition, we obtain the first order

interface equation
Odag 0s

5 = —EVr(t)ao + ho(y, t), (21)
where
% = Mo_l/QzeA(Z)(f(Q))z dz, M, := /QzeA(z) dz,
h = - A(2) !
ho(y,t) = —H(y,t,0)— M, /Qze {Q v+ F(Q)-QVryy) dz.

We remark that neither M, nor the last integral depends on ay, since the integration
variable z is shifted by a, such as

where Q = Q(z — ag), A(2) = A(z — a,) which are independent of aj.

CHECK ! Q = Q(z —ag) or Q = Q(2) ?

Therefore, iLo(y, t) does not depend on a,. Notice that (21) is an inhomogeneous
version of the linearization of the lowest order interface equation (17).

When the solvability condition is satisfied for (18), it has the family of bounded
solutions

uiln(y7 i z) =a (ya t)Qz + ﬂi1n<ya t, Z), (22)

where @}, is a bounded solution of (18) with u},(y,t,0) = 0. Since hy(y,t,z) decays
exponentially to zero as z — +oo, so does u},. The coefficient function a; is to be
determined so that the next order equation be solvable.

Higher order approximations are obtained in a similar way. At order O(e?) the
equation is of the same form as (19):

O*u ou? N
mn mn : — . 2
022 + OJ(Z) 92 +/8(Z)um h’Z(y:t) Z) ( 3)

Applying Proposition 2.1, we find that (23) has a bounded solution u,, if and only
if

+o0o
/ Q:e"@hy(y,t,2) dz =0 (24)

14



where

oul, 1 2 Oud 1 2
hay,t,2) = (" () - v)uin— " 4 5 (" (ui) - v) (i) 5% = 59" (uin) (i)
Oul 0) 04 "
+8—£“+H a“”rf( n) - Vi iy + i " () - Veu

a 0
—Ar(t)u?n + zH(l)a—zm — 2v; - Vi Um + 2 (ug)) - V§“1(t

Since h»(y, t) decays to zero at an exponential rate as z — +00, so does the solution u2,.
Using (22) for uj, in this expression of hy, we have, with u) (y,t,2) = Q(z + ao(y, t))
being utilized,

ha(y,1,2) = B @) + B + Qs ot + Q(Q)- Ve + (), (25)
where

L(z) = {Qi(f” v)}, —{9(Q)}, Q:, (26)

L(z) = (f"(Q)- {Qz o, TQ) 1), Q) — {d(@),w (= 5L7) (27)

+{Qz}t +H9Q,, + f(Q) - VryQ. + Q.f"(Q) - Vry@ (:= L"),

and Iy(z) represents terms independent of a;. Substituting (25) into (24), we find that
the solvability condition is reduced to

Oa 0s r .
8—1:1 =5, Vrno + / Q. 13(2) dz. (28)

In fact, integrating by parts and using the fact that P(z) := Q,e**) satisfies the adjoint
equation of the homogeneous version of (19);
P,,—a(2)P,+ ¢'(Q)P =0,

one can verify [ I7(z)P(z) dz = 0. To this end we calculate

o0

JIE-CLErE / @U"Q- )P dz— [ (g(@)Q:P az

—00 —00

/ —Q’f"(Q) - vP, + ¢(Q)Q.P, + ¢'(Q)Q..P dz

- / B()Q.P, + ¢(Q)Q..P dz

:/Oo sz(fzz_apz+gl(Q)€) dz =0.

-~
=0
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Integrating by parts, using the equation for P and the equation (18) for @}, one can

also find that [ I}(z)P(z) dz = 0. To prove this claim we evaluate

/ P dz = / T Q) ) {Qh ). P+ Q) - v, (QEh)P — {¢(Q)), ThP d

o

in’/

:/ _(f”(Q) : V) QzﬂllnPZ + gl(Q)ﬂiln,zP + gI(Q)ﬂllnPZ dZ
=/ Bui P, + (aP, — P,,)u;, Uy, , dz

:/ /BulnP +au11’12P +u11’1ZZP dz

oud 6u
— in (0) ¥ “in 0
/ ( 5 +H 52 + f ( ) Vr(t)um> P, dz
oud Bum
= _ / < ot + H 92 + f ( ) Vp(t)u?n>z Pd:z

=— / L°P dz.

Therefore, (28) follows from (24).
Atorder O(e*) (k € N, k > 3), the equation is again of the same form as (19):

O*ul, oul
W—i-a( z) 8z + B(2)ufy, = hi(2). (29)
Here, hy depends only on u,u} ..., uf ! and is given by

by = I(2)ag—1 + Qz "+ Q.f'(Q) - Vrgae—1 + Ip(z),

where a5, 1(y, t) is the coefficient of Qz in the (k — 1)-th approximation

uET (Y, 2) = a1 Q. + ! (30)
L =(£"(Q) - v) {Quuin}, + {"(Q) - v}, (Qeu) — {d' (@}, win (=1
+ {Qz}t +HOQ.. + £'(Q) - VrpQ: + Q:1"(Q) - Vep@ (= 1,"),
and I depends only on ay, ..., a; 2. We notice that no term depending on (a;_1)? is

present, so the anal sis for k > 3 is slightly simpler than it is for £ = 2. Moreover,
I' is the same as I,"' with @, being replaced by u}, and I,° = I,°. Therefore, by the
same computation as above, f ILP dz = 0 follows. Applymg the solvab111ty condition
to (29), we obtain the k-th order interface equation

Oap_1 _ Os

ET ——a—vr ak—1+ilk—1(yat)' (31)
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where by, represents the terms that depend only on ay, .. ., a;_3, but not on ak 1
For an integer m > 1, we now define the m-th order inner approximation u;" by

sm

uin yvt Z Z‘S um yat Z (32)

where we set a,,(y,t) = 0 in the expression of the last term v} = a,,Q, + ulp.

3 Proof of main theorems

3.1 Proof of Theorem 1.1

When the initial interface is smooth, the initial value problem for (17)

v -v=s), (Y0 =7(y)

has a smooth solution on t € [0, 7] for some T = T(¥°) > 0. We then solve the initial
value problem for (21) with ay(y,0) = 0 on the time interval [0,7]. Since this is a
linear inhomogeneous first order equation with a non-characteristic initial surface, the
problem has a unique solution on [0,T], which we denote by a(y,t). Similarly, the
initial value problems for (28) and (31) with a;(y,0) = 0 and a;_,(y, 0) have a unique
solutions, denoted by a, (y, t) ane a;_1(y, t). In this way, we can determine all functions
in (32) up to any order m € N.
There also exists a § > 0 so that the correspondence

Lo x (—26,20) > (y,7) = = = y(y, t) +rv(y, 1)

smoothly parameterizes the 2§-neighborhood of I'(t) = {z = 7 (y,t) | y € To} C RY
for ¢t € [0, T]. For z in the 2§-neighborhood of I'(¢), the inverse of the parametrization

= (y,7)

is expressed by
y=19(xt), r=7(z1)

We denote by Q~(¢) (resp. Q7(¢)) the component of R¥\I'(t) where r < 0 (resp.
r > 0). For d > 0, we define

Q5 (t) = {z € O*F(t) | dist(z,T(¢)) > d}.
Let us denote by ©~(r), ©°%(r) and ©*(r) smooth cut-off functions satisfying
0<67(r),0%r),0"(r) <1

17



and

O (=1 (r<-2), O ()=0 (r>-9)
(r)=1 (Ir| <9), O%(r)=0 (|r[ > 26) (33)
OF(r)=1 (r=>29), ©F(r)=0 (r<y9)

We now fix an integer m > 1 and define m-th order approximation v*™(z, t) by

U™z, t) = uw(x,t)  for z € QF(t),
W (2, 8) = Ut (2, )0 (7) + s (2, 1) O (7) 34
+0°(Fus™ (9,1, %) for x e RV\(Q5(t) UQ35(¢)),

m

fort € [0,T], where 7 = #(z,t),§ = 9(x, t).
¢From our construction of the outer and inner expansions in §2, we obtain the fol-
lowing.

Proposition 3.1. Let m > 1 be an integer. Then, u*™(z,t) defined in (34) satisfies
”{_:ui,m i sfl(us,m) . vus,m o €2Au6,m _ g(u€7m)||L°°(RN><[0,T}) — O(€m+1)
ase — 0.

To prove Theorem 1.1, we use the comparison principle. We consider the auxiliary
problems

ug + f'(u) - Vu = eAu+ e {g(u) £ ™} (35)

for a fixed integer m > 1. We apply to the problem (35) the same procedure as in §2.1
to obtain sub- and super- outer solutions u = ug () and @}, (z) defined by

() = u_ + g'(u_)e™, for x € Q(t),
oW uy + ¢’ (ug)e™, for z € QF (1),

& (2) = u_ —g'(u_)e™ for z € Q (t),
outt™ T uy — ¢'(uy)e™, for z € QT ().

Note that u¢ (z) < @, (x) for z € Q because of ¢'(us) < 0.
Applying the procedure of §2.3 to (35), we obtain m-th order sub- and super- inner
solutions uf} (y, t, 2) and @l (y, t, 2). These sub- and super- inner solutions satisfy

O*uly Oufn m_
552 + a(z) 9 + B(2)ul = hpy(z) — 1
and o 5
Uiy Uiy —
822 +a( ) 82 +ﬁ(Z)Um—hm(Z)+1,



respectively. Since the difference between (1) and (35) appears only in the O(¢™)-term,
inner solutions u¥ with lower indices (0 < k < m) remain the same for both (1) and
(35). By using the variation of constants formula presented in Proposition 2.1, it is easy
to verify that

un(y,t,2) < uin(y,t, 2) <r(y, ¢, 2).

Then m-th order sub and super inner approximations u;;™ and u;," are defined by
the same formula as (32) with «[? being replaced by u[* and @]. We also define v*™(z, t)
and ©*™(z, t) by the same formula as (34), except that uey is replaced by v, and @

out’/
and uy™(y,t, z) is replace by u;™(y, t, z) and @;" (y, t, z), respectively. The order rela-
tions for the outer and inner solutions above now inherit to the approximations

u™(z,t) < ut™(z,t) <u™(x,t) xRN, tel0,T).
Moreover, by using Proposition 3.1, we have, for small ¢ > 0,
Egi7m+€fl(ye,m) . Vga,m _ 82Ay€’m _ g(ge,m)
="+ 0E™N <0, zeRY, te|0,T],
and
€ﬂ§’m+€fl(ﬂs’m) Vue™ — €2Aﬂ6’m o g(ﬂe,m)
=+e™+0E™) >0, zeRY, tel0,T).

Therefore, u*™ (resp. ™) is a subsolution (resp. supersolution) of (1). The comparison
principle yields that (1) has a solution u*(z, t) satisfying

us™(z,t) < uf(z,t) <u™(x,t) xRN, tel0,T).
Since ||z®™ — u®™||L~ = O(e™), we conclude that
|uf(z,t) — u=™(z,t)| = O(e™) reRY, tel0,T] (36)

By our construction of ™ in §2, we have

limu®™(z,t) =
e—0

{ u_ for xz € Q(t) te0,7]

uy for x € QF(t) ’

This, together with (36), completes the proof of convergence part.

We now prove the validity of (9) in Theorem 1.1. Notice that the wave profile at
the lowest order approximation uf, was shifted as Q(z + a) by the amount —a, in
the stretched coordinate. Therefore, the O(e)-approximation to the interface v*(y, t) is
given by

¥ (y,t) =%0(y, t) — cao(y, )(y, t) + O(e?).
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Then the unit normal vector 1°(y, t) to the interface 4° is represented as
Vg(ya t) = V(ya ) + 5V1" aO + O( )
Therefore, by using (21) and s(v¢) = s(v) + €ds/0vVray + O(e?), we have
8(1,0

Vi v =(n)e v — e T O(e?) (37)

—s(v) ¢ {%w)ao ol t)} L o)
—s(vf) + eH (1) )

+eMy! / Q.4 {Q, - v+ f1(Q) - Q. Vrwr} dz + O(?),

where H¢(y,t) is the mean curvature of the interface represented by v¢. Let us now
examine the integrand in the last term.

First of all, when 7, evolves according to (17), the ¢t-derivative of v is given by v, =
—Vrs(v). For simplicity, we let s, and @, denote, respectively, ds/0v, and 0Q/0v”
(p = 1,...,N). According to the definition of the tangential gradient V) in (14), we
have!

v 0s(v 0 ovP
Vrs(v) = a—;?gjk(yat) 8;15’“) spayfg”“(y,t)a—yk

Therefore, the g-th component of the tangential derivative is given by

O(10)? 50V
oy S oy

= Spr(t) VP,

[Vr(t)s(y)]q = $p [VF(t)Vp}q =

which gives rise to

0 (’YO)q gjk: @ )
oy’ oyk

Qv = Qq’/g =—Qq [Vr(t)S(V)]q = —QySp

Here and in the sequel, Sk and g% are all evaluated at (y, ¢, = 0). Similarly, we have

(9"}/0 ot
]k
and hence
! gt ( ) ik 8,/1
F(Q)- QuVruyr = £1(Q) [QVrwV']” = Q. f, oy i’ oy
In the sequel, summations over repeated indices are applied for p,q = 1,..., N and for j, k,l,s =
1,...,N—1.
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where f) means the p-th component of the vector f'. The definition of the second
fundamental form (hks)ﬁ 1 of I'(t) yields

D
ai _ _hksgsl

e =~ 28 39)

0y

which in turn shows the symmetry

9(v0)? ROV _ 9(70)? R OVP
oyl © Oyt Oy ° Oyk

Using this symmetry and (38), we get

Quui+ (@) QuVrwy = —{Q[VrysW)]’ — Qufy [Vrpr*]"}

! 8 pa 7 s
= Qusp—F)) 5%2) E;Zl) g (39)

On the other hand, Proposition 2.1 implies that ), has the following representation

Z’

A =0 [ g (/ PQu(sy— 1) dz") .

o0

Therefore, (37) becomes
% - v° = s(v°) + e {H® + Tp K™} + O(e?), (40)

where T,, is given by

Ty = —M,* / PQ.(sp — f,) {/ Pt?z (/ PQ.(sq — f,) dz”) dz'} dz  (41)

oo

and K is defined by
KP4 — 8(70)1) a(VO)qg]
oy oy
which is symmetric. Note that we have evaluated T,, and K?? for I'(¢). However, the
difference between I'(¢) and I'*(¢) is of order O(e). Therefore, the differences between
T¢ , KP? and T,,, K" are contained in O(e?)-terms in (9). This proves the validity of

pq’ €
the interface equation (9) in Theorem 1.1. [ ]

Fhieg®, (42)

By shifting the integration variables 2", 2’, z to 2" + ag, 2’ + ag, z + ag, we see that T,
do not depend on ay.
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Lemma 3.2. The matrix T is independent of ay, symmetric and positive semi-definite.

Proof: We use the representation (41) and integrate by parts to obtain
L1
Tpy = M, P—Qsz(Z)Lq(Z) dz,

where

z

L(2) = / PQ.(s, — f1) d".

—0o0

It is obvious that T, = T,,. Moreover, we can write

T = M / P;zL(z) ® L(2) dz, (43)

where the vector-valued function L is defined by
L(2) = (La(2), .., In(2)).

Evidently, (43) shows the positive semi-definiteness of T.

Lemma 3.3. The sum T, K?? is a weighted sum of principal curvatures;
N-1
Tp K™ = Z W'k,
i=1

where k; (1 =1,..., N — 1) are principal curvatures of I'(t).

Proof: Let us first recall from (42) that the N x N-matrix K = (K?9) is expressed as

6'70 17 -1 8’)’0 ¢
_ 90 il A
K ayg hg ) (44)

where ¢ = (g;;) and h = (hy;) are the first and second fundamental forms of I'(¢). By
definition, the principal curvatures «; (¢ = 1,..., N — 1) are roots of the characteristic
polyonmial det(h — kg). In other words, the principal curvatures are eigenvalues of the
symmetric (N —1) X (N —1)-matrix hg *. Let us diagonalize hg ! at each o (y, t) € T'(¢)

22



by choosing an appropriate parametrization y — 7y(y, t). Then, from (42) and (44), we
have

T, KP = Zw Ki,

where
N N-1 8( )q
= Z Z qu e, g (no summation over ¢ is applied).
pa=1 j=1 8y7 yz

3.2 Proof of Theorem 1.2.

The proof consists of the same steps as the proof of theorem 1.1, so we just indicate the
differences.

The outer solution is the same as before in §2.1. However, when we compute the
inner expansion, the first line of (1°) is multiplied by £, instead of €. Setting r = £z in
this modified version of equation (1°), we obtain

0%u , ou
0 = o - (WG + o)
0
+e {((%)t — H®) 8_: — f'(u)- Vr(t)“} 45)
ou 5” E : D
2 ) ou (), _ vy i . (1) IPD.
+e { ot + A"y —zH 92 z (f (U) Vr(t)U)} + = € P](yat; Z)U,

where 75]- are differential operators acting on functions of (y, ¢, z), which we need not
use explicitly.
We seek a solution of the form

Uin(2,y,t) = up (2,9, 1) + cuiy (2,4, 8) + . . ..

Substituting this expression into (45), we will determine u . (4 > 0) successively, start-
ing from j =0to j =mforany m € N.
At order zero, (45) gives rise to the equation

azu?n 0 au?n 0
922 - fl(uin) ) VE + g(uin) =0
with boundary condition
up(—00) =u_,  uy(+00) = uy.
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By our assumption s(r) = 0 and Proposition 1.1 this problem always possesses a
unique solution v, (2) = Q(z+ ao; v). As before we leave some freedom by introducing
a shift ay(y, t) which will be determined later.

At order O(g), (45) implies

82uiln aulln 1 _
822 +Oé(2) 0z +6(z)’u’in - hl(z)? (46)

where
hi= (=) - v+ H(y, 1) Q. + f(Q) - Ve Q-

Here and in the sequel, @ and @Q,, etc. always mean Q(z + ag; v) and Q. (z + ao; v), etc.
Applying to (46) the solvability theory (cf. Proposition 2.1), we obtain

(o)e - v =H (g, 1) + My / PF(Q) - Vi@ dz

=H(y,t)+ M;* / Pf'(Q) Q,,Vp vdz+ My / Q.Pf'(Q) dz- V) ao,

where @ = Q(z) and P = P(z — ag) = Q.(z)e**~%) which are independent of a,.
Since Q(z) and f'(Q(z)) are odd functions (cf. Lemma 1.2 (2) and f even), and hence
P(z — ag) is even in z, the last integral vanishes; [ Q.Pf(Q) dz = 0. Therefore,

—o0

arguing as above, we find
(7o) - v = H(y,t) + Tpg K™,

in which T, is the same as before, defined by

z

~ M /PQZ J(2) dz with Ly(z) == /Psz;, dz',

—00

where s(v) = 0is used and f, = f;(Q), the p-th component of f'(Q).

Notice that qy is still to be determined. In fact, an evolution equation for aq will be
derived from the solvability condition for uZ below. Once the solvability condition for
(46) is fulfilled, it has a unique family of solutlons

Ui = a1(y, £)Q: + iy,

where a; is to be determined and %},, normalized as @}, (z = —ao) = 0, depends only on
ag (and on v(y, t)). More precisely, we have

ﬂiln (Z) = ﬂéven(z) + ﬂ(ljdd(‘z) (47)
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. _ z+ao 1
ueven(z) _QZ(Z + 0’0)/0v p(zl)

0. ( P(2")heve(2") dz") d7, (48)

3

S}
~

z+ap _ N
Ugaa(2) =Q:(2 +a0)/0 m ( P(z")R3%(2") dz") dz, (49)

where h{"" and h{? stand for the even and odd part of h; with heven(z) = heveR(z — ag)
and h$94(z) = h994(z — ay). For reference, we give them explicitly.

RS (2) = (= TpKP)Q, + Quf' (Q) - Vryr?,  h3¥(2) = Q.F'(Q) - Vi ao.

Recall again that Q(z) is an odd function. This yields that S (z) and h9%(z) are even
and odd functions, respectively, and satisfy

3

/ Ph{™™ dz =0 and / PR dz = 0.

Len(z — ag) and @44 (2 — ag) defined in (48) and (49) are, re-
spectively, even and odd functions. Moreover, we emphasize the following

Ugaq(2) = Qu(2 + a0) - Virgyao = Qp[Vr(raol’-

These facts will play a role later.
Now, (45) yields the following equation for u

Therefore, we find that u}

2.
in”/

82’U,i2n 6ul2n 2 _
922 —|—0z(z) 0z +B(z)’u’in - h2(Z), (50)

where h; is given below. We will derive an evolution equation for ay by applying
Proposition 2.1 to (50). In fact, we show that the condition

/ Phydz =0 (51)

leads to a linear parabolic equation for ay, where h, is given by

h2(y’ ta Z) (52)
1 - , -
=L@ @) + L' (2a + 1D + Q=1'(Q) - Vrar +1(2)
dug, T, 0 (1) Oup, 17,0 (1) ,0
+{ 5t - Atuy, +zH W-l—z (f (uin)-Vr(t)uin>},
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which is similar to (25). Indeed, I and I, have the same expression as in (26) and
(27), while T,"” and T; are given by

1,0

I" =(—()-v+H) sz (f”(Q) : r(t)Q) Q.+ f(Q) - VrpQ:, (53)
15 =(Q)-vit, 2 1 Lp(Q) - v(ah Q. — Sa"(@) (L) 59

8u

+(=(v)e v+ H) 3> Ep

2+ (f"(Q) - Ve @) Ty + f'(Q) - VT,

Let us explicitly analyze the condition (51). By the same computation as in §2.3, one

can show that
2 1.1 —1,0

The anti-symmetry of the integrand implies [ P(f'(Q) - Vrya1)@Q. dz = 0, eliminating
a; completely from (51).

When we compute the integral [ PTg dz in (51), we encounter terms which are
linear and quadratic in Vrgae. These terms come from ulyy = Q,[Vrwaol (here,
and below, summations over repeated indices p,q,p’ = 1,..., N are applied). By us-
ing anti-symmetry of integrands, we find that integrals multiplying quadratic terms
in Vpao vanish, in which we use the facts that f is even and g is odd, and hence

f(Q(2)), ¢"(Q(2)), Qy(z) are odd, and f"(Q(z)), Q.(z) are even in z. More explicitly, we

have

/ PTg dz = Pﬁ'p dz[Vp(t)ao]p + / Ppr;(Q) dz[Vp(t){[Vp(t)ao]p}]q + ... (55)

PF, d2[Vr(aol® — MyTypg[Vrw{[Vraol }* +

where “...” stand for terms which are all together independent of ag as well as V) ao,
while F, is defined by

FP :(f”(Q) : VQpﬂtlaven)Z - g”(Q)QPﬂ}even - (_(70)t v+ H(O))(Qp)z (56)
0
+ (£3(@)Teven): + 52 {13 (Q)Qp} Ve Ip.
We now deal with the third line of (52).
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For the first three terms in the third line of (52), we have

oul da
= AT 4+ 2Q.HY :Qza—to — Q.ATay + 2Q. HY — 2(Qp).(Vr@yV? - V(o)

ot '
— Q=2 Vol — Qpg Ve’ - V" — QoA™Y + Qpif.
By using anti-symmetry of the integrand, one can show that [ PQ,, dz = 0, and hence

the coefficient of |Vryao|? in (52) vanishes when substituted into (52). Moreover, we
have

/ zPQ, dz = /(z — ao)PQ, dz = —Mya,.

For the last term in the third line of (52), we have

/ 2PP(Q) - Vil dz = / 2PQ.1)(Q) A2V, aol? + / 2PQ,1(Q) A2V, P
- / 2PQ. £)(Q) d2[VS)) aol? + agTyg[ V1), V1.

We finally conclude that the solvability condition (51) for the problem (50) is equiv-
alent to the following linear parabolic equation

da
-, =Alag + HOao + Ty [Ve(o {[ Ve a0 }* = a0Tpy[Vecr)? (57)

+ F(ya t) : V1"(1&)0'0 + G(ya t) : vg()t)G'O + BZ (ya t)a

where the principal part ATag + Tpg[Vr{[Vr@aolP}? on the right hand side is uni-
formly elliptic because of the positive semi-definiteness of T. In (57), F(y, t) and G(y, t)
are vector fields on I'(¢) defined by

o0 (o.¢]

P, =2M,* [ P(Qy). (T ) = My [ PF

—00 —0o0

G(y,t)=— M,* / 2PQ,f'(Q) dz

which are independent of ay. We note that the homogeneous part of (57) is the lin-
earization of th interface equation (11), although we do not bother proving this fact.
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Similarly, at order O(*), the solvability condition gives rise to

Oay,_
0kt 2 =Alapo+ HOay» + Tpg[Vrw{[Vrwae—2]"}* — ax—2Tpg[Vr@r* (58)
+ F(y,t) - Vrgar—2 + G(y, 1) - v(;&)ak,z + i (y, 1),
where ﬁk(y, t) depends only on ay, . . ., ax_3, but not on a;_».

In this way, we can construct approximate solutions as high order as we wish. Then,
the remaining part of proof is the same as the proof of Theorem 1.1. This completes the
proof of Theorem 1.2. |

4 Examples and Discussion

Following an approach described in [6] for f = 0, we can explicitly determine the wave
speed and the heteroclinic orbits when g is cubic and f is quadratic in .

Lemma 4.1. Consider the nonlinear eigenvalue problem (5) with

g(u) = —Ru—u)u(u—us), u <0<wuy, R>0,

1
flu) = §u2a+ub, a, be RV,

The wave speed s(v) and travelling wave profile Q(z) are then explicitly given by

s(v) = U_IUJF{a-V— (a'l/)2+8R}+b-I/

—UyU_ +ULU_€
—u_ + u+e—D(u+—u,)z

\/(@-v)’+8R—a-v
D = .

4

D(ut—u_)z

Qz) =

where

Proof: The statement is verified directly by following the method described in §11.5
of [6] for scalar bi-stable reaction-diffusion equations. [ |
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4.1 Symmetric case

Let us first consider a completely symmetric nonlinearities

1

flu) = Ju'a, g(w) = ~u(u’ - 1)

with the vector a remaining as the only parameter.
The travelling wave profile is then Q(z) = tanh(Dz) which depends on the direction
v only through D = 1(y/(a-v)? + 8 —a-v). We have
oQ Da, z

= = _ P =Q,e* = D(cosh(Dz)) (22 (59
Q=54 G0 TS (D2) Qe (cosh(Dz)) (59)

This allows us to compute

My = /eA(Z)Qz(z) dz = D? / (cosh(Dz))™ D ™ dz. (60)

Similarly, we get from (41) with s(v) = 0 and (59)

MyT,, — — / A)Q,Q,11(Q) d
D?a,a, r

= — ¢ [ rtanh(Dz)(cosh(Dz)) (D ™ dz

Vavres )

2 1 7 a-v
- DA, ( ) / (cosh(D2))" (B ds

(a-v)2+8 \a-v+4D

Comparing this expression with (60) gives

a,a,

Tpy= — 221 .
P (a-v)2+8

In particular, we can see directly that the matrix T is positive semi-definite. The defi-
nition (42) of K?? and elementary computations lead to

1
TpK? = g8 Ve D.
Therefore, the interface equation (11) in our special situation is written as

(61)

V =H(y,t)+a- Vry <—ArCta\n/(§ﬂD))

29



Note that D > 0 in the function Q(z) = tanh (Dz) signifies the “steepness” of the wave
profile. Therefore, (61) means that the tangential variation of the “steepness”

Arctan (\/ED)
V2

of the wave profile Q(z;v) is converted in the singular limit to the normal velocity of
the interface. Moreover, this effect does not operate when a is normal to the interface,
where the interface is driven by the mean curvature alone.

Another viewpoint is possible for (11) in the present situation. Applying Lemma
3.3, the interface equation has the following expression

N-1
V=3 (1+uw)k, (62)
i=1
where
N-1

‘ . Al ) <870 > ji . .

= _— — . t '

v (a-v)2+8 ]z_; (0y] a By a| g’ (nosummation over i)

Therefore, (62) is considered as a motion driven by a weighted mean curvature. Note
that w® in (62) vanishes when a is parallel to v. This means that the curvature effects
on the normal velocity is enhanced when a is parallel to the interface.

It is of interest to note that the matrix T which stems from the first order differential
operator f'-V contributes in the singular limit to the curvature which is a second order
operator.

4.2 Slightly asymmetric case
Let us consider e-dependent flux and reaction terms
f(u) =ceub, g(u)=—a*u(u— (1—¢))(u+ (1+¢)) (witha > 0).

In this situation, Theorem 1.2 applies. The second term in (61) vanishes because of
D = /v/2. However, e-term in the wave speed s(v) comes in and the interface equation
is given by

V=H+v2a+b-v (63)

This is similar to a curvature flow driven by a constant force (cf. [8])
V=H+k (64)

which comes as a singular limit of the Allen-Cahn equation with slightly asymmetric
source term. In (64) k represents a constant driving force. In our equation (63), the
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driving force depends on the orientation of the interface. However, (63) is expressed
as follows.

(:}IO)t = H -+ \/5(1,

where 59 = o — t(b - v)v. Therefore, the motion of interface driven by (63) is a motion
by mean curvature with a driving force plus constant translation with velocity b.
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