
A flexible parameter-dependent Algebra
for Event Notification Services

Annika Hinze, Agnès Voisard
Institute of Computer Science

Freie Universität Berlin, Germany

fhinze,voisardg@inf.fu-berlin.de

Abstract

Event notification services, or alerting services, are used in various applica-
tions such as digital libraries, stock tickers, traffic control, or facility management.
However, to our knowledge, a common semantics of events in event notification
services has not been defined so far. In this paper, we propose a parameterized
event algebra which describes the semantics of composite events for event notifi-
cation systems. We define the event operators that form composite events and we
introduce parameters for event instance selection and event instance consumption.
These parameters serve as a support for handling duplicates in both primitive and
composite events. The event algebra is exemplified in the domain of transportation
logistics.

1 Introduction

Event Notification Services (ENS) are used in various applications such as digital li-
braries, stock tickers, logistics, traffic control, collaborative work, facility management,
remote monitoring, security, and project control. They have gained increasing atten-
tion in the past few years. Several systems have been implemented, such as Le Sub-
scribe [25] or NiagaraCQ [9]. An event notification service informs its users about new
events that occurred on providers’ sites. User interests are defined by means of profiles,
which may consist of queries regarding primitive (atomic) events, their time and order
of occurrence, and of composite events, which are formed by temporal combinations of
events. Profiles are defined using a Profile Definition Language for Alerting (PDLA).

A profile consists of two parts, a query part and a parameter part. The query part,
also called query profile, defines the periodically evaluated query (similar to a search
query); the parameter part holds additional information about the user. In this paper we
only consider query profiles: The parameter part is left out as it contains no valuable
information for the event semantics.

The query part of a profile is matched against the event descriptions. Users can be
interested in primitive (atomic) events or in event combinations. Primitive events can
be described, e.g., by either attributes (e.g., temperature) or time of event or duration of
a certain state of an object, or any combination of those. An object can be for instance a
sensor or a web page. Examples of query profiles borrowed from a logistic application
are:

QP1: Notify if a traffic jam occurred and if one of our trucks is affected

1

QP2: Notify if a customer cancelled an order a given number of times within a
month.

These two examples show that, in contrast to other fields such as information retrieval
or database query languages, a PDLA has to consider time restrictions and resulting
time-dependent parameters. In this paper, we use an event algebra to describe the
events that are filtered by an ENS and that can be subscribed to via profiles. The events
entering an event notification system are filtered according to user profiles. This event
matching is based on the filter semantics defined for the service. Profiles defined by
users are restricted by the filter capabilities. Therefore, the semantics of the event
filtering and the one of the profiles are closely related.

The usability and power of ENS heavily depend on the expressiveness of the profile
definition language. Various languages have been implemented in this context; some
are rather simple and are based on the Boolean model, e.g. [25]. Others are more
sophisticated and use, for instance, an SQL-like syntax [21], or XML-QL [9].

In addition to the fact that only few languages are defined for event notification
services, the evaluations of languages that seem to follow similar semantics do not
always lead to similar results. One example is the handling of duplicate events (similar
events occurring at different times): depending on the application field and on the
implementation, in the filtering process, duplicates may either be skipped or kept. The
definition of composite events often relies on Boolean operators, e.g., in the Cambridge
model [5]. This is not sufficient as the temporal semantics of, for instance, an AND-
expression in a distributed environment remains unclear. We extend the semantics of
well-known ECA rules of active databases by introducing the notion of relative time.
Since ENS systems are used in the context of a distributed environment and cannot rely
on a transactional context as in the case of active database systems, the simultaneous
occurrences of events cannot be determined accurately. Therefore, all composite event
operators should be handled as temporal operators and extended by a relative time
frame (similar to time handling in distributed systems).

Because the semantics of temporal operators as introduced, for instance, in [3]
is not defined in a uniform manner in the numerous application areas, the approach
described in this paper supports various perceptions. This is achieved through the in-
troduction of a flexible semantics which is controlled by a set of parameters. The
parameterized event algebra handles temporally composite events. The algebra is pre-
sented in two steps. In a first step, we informally describe the event operations while
in a second step we formally propose the parameterized definitions.

This paper is organized as follows. Section 2 gives an overview of necessary back-
ground information. After introducing an application scenario which will serve as a
reference throughout the paper, we shortly describe basic concepts and related work.
In Section 3 we informally introduce our event algebra which allows one to describe
the event operators. We then show (Section 4) the needs to define additional parameters
and we introduce the parameterized algebra. In Section 5, the algebra is applied in the
logistics example, which illustrates the influence of various parameter settings. Finally,
Section 6 addresses concluding remarks and gives some directions for future work in
this domain.

2 Background

This section is devoted to our context of study. It first describes our running example,
borrowed from the field of transportation logistics. The basic event-based concepts are

2

then introduced. A panorama of related work ends this section.

2.1 Application Scenario

Let us consider a company that sells various goods to its customers. The goods are
stored in a warehouse and are delivered to the customers by trucks T1, T2, and T3 (see
Figure 1). During the night the trucks are kept in a garage. Each morning, a truck
driver has a delivery list for the day, which is based on several scheduling and loading
restrictions, such as convenient delivery time for customers or load balancing. He or
she picks up the goods from the warehouse and follows the delivery list. All trucks
have to be back at the garage at the end of the day.

Figure 1 depicts the following scenario. On a given day, customers A - I expect
deliveries. The customers’ respective locations are also shown in the figure. Let us
assume that each delivery takes in the average 30 min. The delivery lists that must be
followed by the various trucks are also given in the figure.

Warehouse

T1

T2

T3

Delivery Plans:

Truck T1: load, deliver A+ B, deliver I, return

Truck T2: load, deliver D+E, deliver C, return

Truck T3: load, deliver H, deliver F+G, return

Garage

2h

1h

1h 1h

1h

3h

H

E

B

I

G
F

D

A

C

Figure 1: Logistics Scenario

The actors we consider in our example are customers, controllers, analysts, and drivers.
Possible events include the start and arrival of each truck, the deliveries themselves,
accidents of the trucks, traffic information, and delivery cancellations. The following
query profiles are defined:

P1: Notify the controller if a traffic jam occurred and one of the trucks is at that time
(�5min) in that area.

P2: Notify the analyst if a customer cancelled an order three times within a month.

P3: Notify customer I if T1 leaves from A or B for I after 2pm.

P4: Notify the controller when all trucks are back.

P5: Notify the controller if goods have not been picked up 2 hours after the start of the
shift.

P6: Notify the controller every 30 min about the location of each truck.

P7: Notify the driver of T1 if customer A, B, or I cancels the delivery.

P8: Notify the driver of T2 if customer C, D, or E cancels the delivery.

3

2.2 Concepts

An event is the occurrence of a state transition at a certain point in time. In contrast to
states, events have no duration. Events may be state changes in databases, signals in
message systems, or real-world events such as the departures and arrivals of vehicles.
Events can be described as collections of (attribute,value) pairs, such as the 3 pairs
in the following event: Event (name = truck-location, truck-number
= T2, location = (x1,y1)). To keep it simple, attribute types (for attributes
name, truck-number, and location) are not considered here.

We are aware of the problem of temporal order in distributed systems. Time is a
rich concept that encompasses many notions. Each event has a timestamp reflecting
its occurrence time. Timestamps are defined within a time system based on an internal
clock. For the sake of simplicity, we assume here that all occurring events can be or-
dered sequentially in a global system of reference (e.g., by applying the 2g-precedence
model of [27] or using the NTP protocol [22]) and that a mapping for real time refer-
ences has been defined. The system of reference for the time is discrete.

We consider primitive events and composite events, which are formed by combining
primitive and composite events. We further distinguish two types of primitive events:
time events and content events. Time events describe the occurrence of a certain point
in time (e.g., 5 o’clock). Content events involve changes of object states in general.
We do not discuss the definition of primitive events in greater detail. Various ap-
proaches are conceivable and implemented based, for instance, on the definition of
keywords (cf. digital libraries) or on the definition of (attribute,value) pairs. In this pa-
per, we use (attribute,value) pairs for the examples. An example for a primitive event
at a simple temperature sensor is then, e.g.,

e1 = event(sensor = xyz; (1)

temperature = 40ÆC) (2)

We distinguish events instances from event classes. The former are denoted event
in this paper. An event class is defined by a set of event properties. Even though events
of the same event class share some properties (e.g., temperature of a sensor), they may
differ in other event attributes (e.g., location). An event class could be, for instance,
all events that describe the delivery of goods to a customer. Then an event is the actual
delivery of a package to customer A at a certain time.

User profiles specify event classes, e.g.,

p1 = profile(temperature > 35ÆC) (3)

Events (instances) are denoted by lower Latin e with indices, i.e., e 1; e2; : : : , while
event classes are denoted by upper Latin E with indices, i.e., E1; E2; : : : . The fact that
an event ei is an instance of an event class Ej is denoted membership, i.e., ei 2 Ej .
This relationship is non-exclusive, i.e., ei 2 Ej and ei 2 Ek is possible even with
Ej 6= Ek. Event classes may also have subclasses, so that ei 2 Ej � Ek . The
timestamp of an event e 2 E1 is denoted t(e).1

Based upon a notation used, e.g., in [7], the matching operator is defined as follows:

Definition 2.1 (Profile Matching @) Consider the event e and a given profile p. It is
said that e matches p, denoted p @ e, if all properties of the profile and the event match.

1The time of events that do not occur is set to1.

4

Profiles can also contain wildcards and other operators such that not all attributes of
the event have to be defined exactly. The exemplary event e 1 matches the profile p1.

2.3 Related Work

Event specification semantics have been developed in various research areas, such as
active databases, temporal or deductive databases, temporal data mining, time series
analysis, and distributed systems.

In the area of active database systems, the problem of event rule specification has
been evaluated for several years (see, e.g., [8]), also with special focus on composite
events [15, 16, 19, 14, 31, 30] and temporal conditions (e.g.,[14, 11, 12]

Active database systems can rely on the transactional context for the composition
of events. Trigger conditions can be defined based on the old and new state of the
database, thus using the concept of states rather than describing the event itself. For
the ordering of database states, the temporal interval operators as defined in [3] can be
used (see [23]). Ordering based on events, as opposed to states, has been implemented
in the SAMOS system [14]. The work of Zhang and Unger [26] is closely related to
our approach, however, parameters and time frames are missing.

The problem of temporal combination of events is also addressed in temporal and
deductive databases. In these areas, various approaches have been introduced, such as
temporal extensions of SQL [28, 29] and a temporal relational model and query lan-
guage [24]. In contrast to ENS, however, temporal and deductive databases focus on
ad-hoc querying. That is, there is no periodical evaluation of a query.

The areas of temporal data mining and time series analysis rely on temporal associ-
ation rules [1, 2, 10]. From a set of data, rules verified by the data themselves have to be
discovered. While similar event operations are evaluated, the approaches differ greatly
from event filter semantics discussed in this paper. In event notification services, event
combinations are given and the matching set of data is to be found, while in temporal
analysis the data are given and the rules have to be derived. The problem of determining
the event order based on incorrect timestamps has been studied in [17, 6, 30]. Finally,
time systems in distributed environments have been addressed for instance in [20, 27].

3 Event Algebra

This section describes our event algebra in an informal manner. Its use is illustrated
in our toy application from Section 2. The set of operators included in the algebra
is derived from the profile language considerations of [18]. An event algebra is an
abstract description of the event concept of a service independent of the actual profile
definition language. It enables the evaluation of the complexity of different services,
supports the detection of inconsistent profile definition, and can serve as basis for an
abstract implementation of a matching algorithm. In order to model composite events,
we employ event constructors (also called operators). We extend the event algebra for
active database systems introduced in [13] in order to consider the temporal demands
on event compositions as well. Without loss of generality we look for the simplest
combinations of events, namely pairs. The events e1 and e2 used in the definitions
below can be any primitive or composite event, t() refers to occurrence times, t in
(: : :)t denotes time spans.

5

Temporal Disjunction: The disjunction (e1je2) of events occurs if e1 or e2 occurs.
As mentioned before, the composite event e3 := (e1je2) also has a time of
occurrence, which is the time of the occurrence of the first one of either e 1 or
e2: t(e3) := minft(e1); t(e2)g.

Temporal Conjunction: The conjunction (e1; e2)t occurs when both e1 and e2 have
occurred, regardless of the order. The conjunction constructor has a temporal
parameter that describes the maximal length of the interval between e 1 and e2.2

The time of the composite event: e3 := (e1; e2) is the time of the later event:
t(e3) := maxft(e1); t(e2)g.

Temporal Sequence: The sequence (e1; e2)t occurs when first e1 and then e2 occurs.
Again, t defines the temporal distance of the events. The time of the event e 3 :=

(e1; e2) is equal to the time of e2: t(e3) := t(e2).

Temporal Negation: The negation et defines a negative event over an interval; it
means that e does not occur for a given interval [tstart; tend]; tend = tstart + t

of time. The occurrence time of et is the point of time at the end of the period,
t(et) := tend(et).

Temporal Selection: The selection e[i] defines the occurrence of the ith event of a list
of events, i 2 N.

The model of composite events consists of (primitive or composite) events combined
through event constructors. We additionally permit the Boolean operators of logical
conjunction (^) and logical disjunction (_) in order to refer the same event instance
more than once:

Logical Disjunction The logical disjunction ec1 _ ec2 describes that one of the given
alternatives has to apply. The event time of e = (e1; e2)t1 _ (e2; e3)t2 is t(e) :=
minft((e1; e2)t1); t((e2; e3)t2)g

Logical Conjunction The logical conjunction ec1^ec2 of event compositions ec1; ec2
requires that all subclauses need to be fulfilled. The event time of e = (e1; e2)t1^
(e3; e4)t2 ^ (e1; e3)t3 is t(e) = max(t((e1; e2)t1); t((e3; e4)t2); t((e1; e3)t3))

and is determined by the temporal event constructors.

Note that logical combinations of event compositions describe relationships among the
terms. The logically-combined terms form a name-space (i.e., equal names such as e 1

identify the same event), whereas equal names combined by event constructors only
define identical event descriptions and therefore a class of events.

Example 3.1 The profile examples given above can be modelled using the event alge-
bra as follows:

P1: Notify the controller if a traffic jam occurred and if one of the trucks is at that time
(�5min) in that area: Let E1 be the class of traffic-jam events in city area A.
Let E2 be the class of all events regarding the location sensor of our trucks, and
E
A
2 � E2 the subclass of truck location events in A. We then have to observe the

composed event e = (e1; e2)5min; e1 2 E1; e2 2 E
A
2 .

2(e1; e2)1 refers to an event composition no matter the time of the composing events. It is equivalent
to the original conjunction constructor as defined, e.g., in [13].

6

P2: Notify the analyst if a customer cancelled an order three times within a month:
Let E3 be the class of cancelled orders of a particular customer. A simplified
definition for the composite event could be expressed as
e = ((e31; e32)t; e33)4weeks�t with e31; e32; e33 2 E3.

P3: Notify customer I if T1 leaves A and B for I after 2pm: Let E2pm be the class
of time-events occurring at 2pm. Let E4 be the class of leaving-events for
truck T1, EA

4 � E4 and E
B
4 � E4 subclasses with leaving-events regard-

ing customer A and B, respectively. The composite event is then defined as
e = (et; (e41; e42)1)1; et 2 E2pm; e41 2 E

A
4 ; e42 2 E

B
4 .

P4: Notify the controller when all trucks are back: Let E5; E6 be two classes of events
describing the start and return of trucks, respectively. Then for each truck we
could define e = (e5; e6)8h with e5 2 E5; e6 2 E6.

P5: Notify the controller if goods have not been picked up 2 hours after the start of
the shift. Let E7 be the class of events of loading goods, E10am the class time-
events defining the start of the shift. Then the composite event is defined as
e = (et; (e7)2h)2h, et 2 E10am; e7 2 E7.

4 The Event Algebra Revisited

The event algebra presented informally in the previous section does not define the
complete semantics of a profile definition language. The semantics of, for instance, the
sequence operation does need further refinement as illustrated below.

This section sets the basis for our profile definition language for alerting, the ker-
nel of our contribution. We believe that for the temporal event operators different
(application-dependent) semantics are conceivable. We therefore introduce a param-
eterized event algebra. This section first motivates the different parameters for event
instance selection and consumption. It then illustrates examples of different parameter
settings.

4.1 Parameters to consider

The following examples illustrates the weakness of the approach given in Section 3:

Example 4.1 Let us assume that one is interested in the sequence of two events (e1; e2)t
as defined, for instance, in profile P4. If we consider the following history (trace) of
events: tr = he1; e1; e2; e2i, it is not automatically clear from the event definition
which pair of events fulfills our profile. Candidate pairs are the inner two events, or
the first and the third. It is also not clear whether the profile can be matched twice,
e.g., by pairs (2,3) and (1,4), or by (1,3) and (2,4).

Various event combinations may be possible. Besides, for different applications, dif-
ferent event-history evaluations could be applied.

Example 4.2 If we are interested in any fourth occurrence of an event e1 we define the
profile: (e1; e1; e1; e1). Considering the (synthetical) trace tr = he1; e1; e1; e1; e1; e1; e1; e1i
the profile could be matched by event number 4, or by 4 and 8, or event by 4,5,..., since
all of them are preceded by three e1-instances.

7

Similarly to the terminology used in active databases [31], for an event algebra for ENS
we need to identify the following modes:

1. Event selection principle: how to identify primitive events based on their prop-
erties

2. Event instance pattern: which event operators form composite events

3. Event instance selection: which events qualify for the complex events, how are
duplicated events handled

4. Event instance consumption: which events are consumed by complex events

We do not consider different event selection principles here, and for the sake of sim-
plicity we assume (attribute,value) pairs to describe events. Event instance patterns
have been introduced in Section 3. In the following sections we introduce modes for
event instance selection and consumption. Event selection and consumption in ENS
cannot be handled independently, as proposed in [31].

Event Instance Selection and Duplicate Events Duplicates of events are event in-
stances that belong to the same event class. Duplicates have to be handled differently
depending on the application and even on the context within the application.

Examples of events include the reading of a sensor at different times, such as the
location of a truck in our example. For the truck locations the latest sensor reading is
the valid one and earlier readings are overwritten.

The delivery events also belong to a single class of events. Delivery events are
duplicates, however, each of these events having to be considered for further planning,
duplicates in this case should not be ignored.

If for some reasons a customer cancels an order twice, the duplicate event can
be ignored. Selecting the i

th duplicate would be the equivalent of application of the
selection-operator as introduced in Section 3. The variants for the instance selection
parameter for the algebra are shown in Figure 2.

Event Instance Identification and Consumption We distinguish the variations in
the identification of composite events. The possible decisions are shown in Figure 3.
Matched events can be consumed by the composite event or they can contribute several
times to composite events of the same class. If matched events are consumed, only
unique composite events are supported. If the filter is applied more than once, a primi-
tive event can participate in several composite events of the same type. Let us get back
to our delivery example. If we are interested in the fact that all trucks are back in the
evening, the profile is defined as the sequence of the events truck X starts and truck X
arrives. In this case we are only interested in unique pairs of start/arrive events, but not
in all combinations of all start and arrive events of the month, for instance.

If events are consumed by composite events, the filtering process could be reapplied
after unique composite events have been identified. This approach can be seen as a
combination of the two parameters event instance selection and consumption. The
next subsection describes examples for the combinations of these two parameters.

4.2 Profile-Event Situations

Figure 4 shows a matrix of profile-event situations, which illustrates the implications
of the parameters introduced above. Note that the names for the rows and columns are

8

into account
take all events

yes no

yes

take the latest event
within each duplicate list

duplicate
overwriting

take the first event of
each duplicate list

no

ignore
duplicates

Figure 2: Event instance selection

no

test sequentially all events
of duplicate lists, each
only matched once

events only part of

composite event
one instance of an

consumption of
matched events

yes

yes

no

reapply filter find all permutations
of event combinations

Figure 3: Event instance identification

simplified descriptions of the different approaches. The corresponding accurate defi-
nition follows shortly after. The examples shown in the matrix refer to the composite
event of a sequence (e1; e2) in a given exemplary trace of events. The events are re-
ferred to in the figure as e1 = Æ and e2 = �, each composite event instance is marked
with an arc. We use here fixed time frames as evaluation intervals so that the different
implications are easier to compare.

events
consume matched

events
keep matched

][

[]

][][

][][

][

events
reapply filter

consume matched

instance
identification

event
event instance

selection

: time interval : event type e1 : event type e2

each duplicate list
take last event of
each duplicate list

take first event of

][

][

][

take all events

Figure 4: Profile and event trace example under different evaluation conditions

The horizontal dimension of the matrix shows the event selection. The selection
either takes all events into account, or only the first or the last duplicate in a trace. It is
important to note that the word ”duplicate” is used here with respect to a profile and not
for the event instance itself. Two events can be different, nevertheless, they may match
the same profile. With regards to that particular profile they are seen as duplicates.

From the matrix we can already derive exemplary applications for the different
approaches. Taking all events is only useful in an application where no instance dupli-
cates can occur, e.g., security systems where any event has to be recorded and analyzed.
This is also interesting in applications where information about changes is crucial (e.g.,
share value raised by 5%), or in a digital library application that delivers new articles.

Taking the first event of a sequence of duplicates is used in applications where du-
plicates do not deliver new information, e.g., whether the value of a sensor reading goes
beyond a certain threshold. In such cases, only the first event delivering the information
about a change needs to be evaluated. Taking the last event of a sequence of duplicates

9

is useful in applications that handle, for instance, status information about different
sources. The temperature control of a building works on the basis of scheduled sensor
readings. In this case the last reading shows the current value.

The examples above clearly illustrate that the appropriate semantics and the various
possible profiles are heavily application dependent.

The vertical dimension of the matrix shows different versions of profile applica-
tions: apply to all events, apply to only the unmatched events, and reapply after a
first profile match. The last approach can lead to a successive matching of possibly
all events in a duplicate list (see first/last event of duplicate list). Here, sequences of
matching pairs can be found.

Considering all possible event combinations in a given series (also keeping matched
ones) results in sets of composite events that have single events in common. This
applies for instance in scenarios where each event itself represents a set of events.
Examples include trucks delivering goods to customers, where a set of goods is loaded
in the morning but the unloading is realized by several events. In this case, the starting
event is a combination of several simple events load product on truck, which can be
seen as factorized.

Discarding matched events ensures that each event only takes part in one composite
event of a certain type. This approach is sufficient for applications where single event
pairs have to be found and where no implicit event combinations occur, such as per-
sonal ID systems for security purposes, with personalized cards that have to be checked
in and out if entering or leaving the building.

The combination of reapplying the filter after discarding matched events is used,
e.g., for parsers and compilers. A sensible application is an event-based XML-validator,
as proposed in [4]. With this method interleaving event pairs can be identified.

4.3 Parameterized Semantics

In this section we formally define our parameterized event algebra. We first introduce
the terminology.

Definition 4.1 (event space) The set of all possible events known to a certain system
is called the event space E . The set of all time events is denoted E t .

A trace, or history of events, is defined as follows:

Definition 4.2 (trace) A trace trt1;t2 is a sequence of ordered events e 2 E with de-
fined start- and end-points t1, t2 respectively.

The history of events a service processes is then trt0;1 with t0 being the point in time
the service started observing events.

As a trace behaves essentially as a list, we can use the operations commonly defined
for lists. For each list we apply an arbitrary local order as defined above, that assigns
an index-number i 2 N to each event. The elements of a list L can then be accessed by
their index-number, and L[i], i 2 N retrieves the i th event of the list.

All profile evaluations start after the profile has been defined. For each positively
evaluated event e1 therefore holds implicitly t(e1) > t(profile).

The semantics of negative events is defined as follows:

10

Definition 4.3 (negative events) Let e1 be an event e1 2 E , et a time event et 2 E t ,
t1 a time span given as t1 2 R based on a certain time system then

(p1)t1 @ et ! f6 9e1 2 E : t(e1) 2 [t(et)� t1; t(et)]g

Then the set of negative events for a given trace is defined as

(p1)t1(tr) @ fetjet 2 tr; (p1)t1 @ etg

Definition 4.4 (trace view) Let E1 be a class of events. The subset tr(E1) of a given
trace tr is defined as the list of continuously ordered events that contains only events
e 2 E1. We call this subset a trace view.

The trace view tr(E1; E2) contains all e1 2 E1; e2 2 E2 with e1 2 tr and e2 2 tr.
We also use the shorthand notation tr(e1; e2). Note that the events in tr(E1) keep all
their attributes including occurrence time, but obtain a new index-number.

We now define a re-numbering on the list tr:

Trace Renumbering The list is subdivided into disjunct sublists tr[1]; : : : ; tr[n] each
containing successive events of identical types. Every element of such a sublist is de-
noted with tr[x; y], where x 2 N is the number of the sublist and y 2 [1; length(tr[x]))

is the index-number of the element within the sublist.

The length of the sublists is defined as the number of list elements. Disjunct sublists
containing only similar events are referred to as duplicate lists. Informally duplicate
lists are often called ordered duplicate lists:

Duplicate List Let E1, E2 be two event classes with E1 6= E2. We then define a
duplicate list DE1nE2

as the ordered list of events of class E1 that occur in a trace tr
without any events of class E2 in between.

DE1nE2
(n) = tr[n] (4)

such that for e1 2 E1, e2 2 E2 holds

e1 2 tr; 6 9e2 2 tr : t(e2) 2 (t(tr[n; 1]); t(tr[n; length(tr[n])])) (5)

The n 2 N defines an ordering on similar duplicate lists.

Note that duplicate lists are subject to changes as long as the closing event did not
occur.

Example 4.3 Let us consider the following trace of events: tr = he1; e3; e1; e1; e3; e2;
e2; e1; e1; e2; e2; e2i. The (e1; e2)-trace view is then defined as tr(e1; e2) = he1; e1;
e1; e2; e2; e1; e1; e2; e2; e2i.

The renumbering results in tr(e1; e2) = htr[1; 1]; tr[1; 2]; tr[1; 3]; tr[2; 1]; tr[2; 2];
tr[3; 1]; tr[3; 2]; tr[4; 1]; tr[4; 2]; tr[4; 3]i with tr[1] = he1; e1; e1i, tr[2] = he2; e2i,
tr[3] = he1; e1i, and tr[4] = he2; e2; e2i. Obviously, the list-length of the first sublist
follows with length(tr[1]) = 3. The example is depicted in Figure 5.

Note that we denote (unordered) sets of events with E or E t while tr[] denotes lists
(ordered sets with possible duplicates) of events. Without loss of generality, we assume
tr(e1; e2) to start with tr[1; 1] = e1.

For the following operator definitions, the values of the parameters P xy, wmin,
wmax, zmin, zmax substantially influence the operator semantics. We therefore intro-
duce different semantical approaches.

The disjunction implements a selection based on occurrence time (or), no exclusion
(xor):

11

tr[1] tr[2] tr[3] tr[4]

tr[1,1]

tr[1,2]

tr[1,3]

tr[2,1]

tr[2,2]

tr[3,1]

tr[3,2]

tr[4,1]

tr[4,2]

tr[4,3]
Trace tr:

View tr(e1,e2):

Renumbering:

Figure 5: Trace and Renumbering in Example 4.3

Definition 4.5 (disjunction of events) Let us consider an event e 2 E , then

(p1jp2) @ e! f((p1) @ e _ p2 @ eg

The set of matching events of a given trace tr is then defined as

(p1jp2)(tr) @ ftr[x; z]jtr[x; z] 2 tr(e1; e2); (p1jp2) @ tr[x; z];

8x 2 [1;1);8z 2 [zmin; zmax]g

The matching set of the disjunction includes all event instances that match either pro-
file. Different values for the open parameters zmin, zmax are discussed subsequently.

The conjunction profile (p1; p2)t is matched by the set of events (fe1; e2g). We
define the semantics of a conjunction of events as follows:

Definition 4.6 (conjunction of events) If two events e1; e2 2 E form a conjunction,
the following condition holds for a given time span t 2 R:

(p1; p2)t @ (e1; e2)) fp1 @ e1; p2 @ e2; jt(e2)� t(e1)j � tg

The set of matching events of a given trace tr is then defined as

(p1; p2)t(tr) @ f(tr[x; z]; tr[y + 1; w])j tr[x; z]; tr[y + 1; w] 2 tr(e1; e2);

(p1; p2)t @ (tr[x; z]; tr[y + 1; w]);8x 2 [1;1);8y 2 [1;1);

8w 2 [wmin; wmax];8z 2 [zmin; zmax] ^ Pxyg

Different values for the open parameters Pxy, wmin, wmax, zmin, zmax are discussed
subsequently.

Definition 4.7 (sequence of events) If two events e1; e2 2 E form a sequence the fol-
lowing condition holds for a given time span t 2 R:

(p1; p2)t @ (e1; e2)) fp1 @ e1; p2 @ e2; t(e2) 2 (t(e1); t(e1) + 1]g

The set of matching events of a given trace tr is then defined as

(p1; p2)t(tr) @ f(tr[2x � 1; z]; tr[2y; w])j tr[2x � 1; z]; tr[2y; w] 2 tr(e1; e2);

(p1; p2)t @ (tr[2x� 1; z]; tr[2y; w]);8x 2 [1;1);8y 2 [1;1);

8w 2 [wmin; wmax];8z 2 [zmin; zmax] ^ Pxyg

Different values for the open parameters Pxy, wmin, wmax, zmin, zmax are discussed
subsequently.

12

Semantical Variations We now evaluate different approaches for the parameter val-
ues, which implement different semantics of the operators. As motivated in an earlier
section, we distinguish two dimensions: the composition of matching pairs and the
selection of events with duplicate lists.

For the composition rules for pair matching we distinguish the selection of unique
pairs (each event in the matching set participates in one pair only) and the selection of
all pairs:

Unique pairs: Pxy : x = y

All pairs: Pxy : x � y

For the second dimension, we distinguish several variations to select events from dupli-
cate lists. Each has to be evaluated differently, depending on the position of the event
relative to the binary operator. We use the notation anterior and posterior to refer to
the two operators, trant and trpost denote the respective duplicate lists.

anterior posterior
first event zmin = zmax = 1, wmin = wmax = 1

i
th event zmin = zmax = i, wmin = wmax = i

last event zmin = zmax = length(trant) , wmin = wmax = m

take all events zmin = 1, zmax = length(trant) wmin = 1, wmax = m

with m 2 N : 8j > m : t(trpost[:; j]) > t(trpost[:; :]) + t, where the dots are place-
holders for the respective values, t 2 R as defined for the operator.

The selection of the i
th event is a (somewhat artificial) generalization of the pre-

ceding one. The different cases can be combined, taking as posterior event every first
in a duplicate list and as anterior event the respective last duplicate match.

The third approach as depicted in the upper left picture in Figure 4, is a combina-
tion of the already introduced dimensions. We consider unique pairs only, but reapply
the filter until all matches are found. The first matches are, e.g., first/last events of
duplicate lists, the second match are second/next-to-last events, and so forth. Other
combinations are plausible. We only show below two intuitive examples.

Pxy: x = y

first event zmin = 1,
zmax = min(length(trant); length(trpost))

wmin = 1,
wmax = min(length(trant); length(trpost))

last event zmin = length(trant),
zmax = length(trant)�min(m; length(trant))

wmin = m,
wmax = m�min(m; length(trant))

While the sequential variations support the selection of the i th event within duplicate
lists the selection operates on the matching set.

Definition 4.8 (selection) We assume the existence of a matching set E � E , E =

ftr[x; z]j8x 2 [1;1);8z 2 [zmin; zmax]g for a given profile as defined above. We
then define an arbitrary order o : E ! N on all events e 2 E based on the order of
the occurrence times so that for e1; e2 2 E follows

t(e1) � t(e2)) o(e1) < o(e2)

13

Then for i 2 N; i � jEj

p
[i]
@ e 2 E; o(e) = i

The issue of order and time in a distributed environment is crucial and has to be con-
sidered for an implementation of this operators.

Evaluation Time. Here we defined the complete sets of matching events without
considering the evaluation time. Obviously, the result of a profile evaluation over a
trace heavily depends on the time of evaluation: The very last event within a duplicate
list might only be known at the end of the observation interval. It is assumed that event
matches including last duplicates are evaluated after the evaluation interval is closed. In
this case the continuous evaluation of all incoming events offers the advantage of early
notification. Here, a fast but probably incorrect information is delivered in opposition
to the correct but later information after the ending of the time frame. An example is
shown in the lower right case in Figure 4 (dashed lines). This approach is appropriate
in several applications, e.g., catastrophe warning systems for environmental surround-
ings or other systems for urgent information delivery (for an analysis of information
correctness see [17]).

5 Application Examples

In this section we briefly discuss the parameters for some of the profiles defined in the
context of our logistics application. We first itemize the event classes as defined in
Section 3:

E1 class of traffic-jam events in city area A,

E2 class of all events regarding the location sensor of our trucks, with E
A
2 � E2 the

subclass of truck location events in A,

E3 class of cancelled events of a particular customer

E4 class of leaving-events for truck T1, with E
A
4 � E4 and E

B
4 � E4 subclasses of

leaving-events regarding customer A and B, respectively.

E2pm class of time-events occurring at 2pm.

The parameters for profile P1 - P3 are defined follows:

P1: Notify if a traffic jam occurred and if one of the trucks is at that time (�5min) in
that area.

� Composite event description: e = (e1; e2)5min; e1 2 E1; e2 2 E
A
2 .

� Instance Consumption: We want to be notified about all occurrences of the
composite event: all trucks in traffic jam areas(Pxy : x � y).

� Instance Selection: For the truck location events we consider the last event
in the duplicate groups (zmin = zmax = length(trpost) or wmin =

wmax = m as defined in Section 4) The events are evaluated continuously.
Traffic jam events are all considered, since several traffic problems can oc-
cur within the same area, and all of them have to be taken into account
(zmin = 1; zmax = length(trpost or wmin = 1; wmax = m).

14

traffic jam
truck location

5 minutes

Figure 6: Trace and evaluation example for Profile P1

An exemplary trace and the associated profile evaluation is given in Figure 6.

P2: Notify if a customer cancelled an order three times within a month.

� Composite event description: e = ((e31; e32)t; e33)4weeks�t with e31; e32; e33 2
E3.

� Instance Consumption: Only unique composite events have to be consid-
ered (Pxy : x = y). Otherwise notifications would be send at every event
occurrence after the third one, which is not appropriate in this case.

� Instance Selection: Every primitive event regarding a new order is to con-
sider, the event specification would have to be refined (zmin = 1; zmax =

length(trpost) and wmin = 1; wmax = m).

An exemplary trace and the associated profile evaluation is given in Figure 7.
The first event pair does only qualify for a partial event, no notification is send.
The next three events qualify, the fourth event does not qualify since only unique
composite events are allowed.

2 weeks
cancelled order
other events

Figure 7: Trace and evaluation example for Profile P2

P3: Notify customer I, if T1 leaves for I after 2pm.

� Composite event description: e = (et; (e41; e42)1)1; et 2 E2pm; e41 2
E
A
4 ; e42 2 E

B
4 .

� Instance Consumption: Only unique composite events are to consider (P xy :

x = y), we do not want to be notified about every possible with all time
events.

� Instance Selection: The last time event before the occurrence of the truck
event is to consider, the time events overwrite each other (zmin = zmax =

length(trpost) as defined in Section 4). Only the first composed truck
event e3 = (e1; e2)1 has to be taken into account (wmin = wmax = 1).

An exemplary trace and the associated profile evaluation is given in Figure 8.
The two truck event pairs are identified, only the first one qualifies since its
occurrence time is after the time event. The second pair does not qualify for
the first time event, since only unique composite events are allowed. It does not
qualify for the second event since is does not match the sequence operator.

15

2 pm time event
leaving customer A
leaving customer B

Figure 8: Trace and evaluation example for Profile P3

As shown in our examples, the logistics scenario describes a mixed application that
processes information coming from differently structured sources. Therefore in this
scenario we have to apply various parameter settings. Other applications use more ho-
mogenously structured sources, so that a single parameter setting could be used within
the application field.

6 Conclusion & Outlook

Event Notification Services play a major role in many recent applications. In this paper
we proposed a parameterized event algebra for event notification services. The event
algebra was introduced in order to describe the event operators that form composite
events. In an additional step we introduced parameters for event instance selection
and event instance consumption. Event instance selection describes which qualifying
events from the trace are taken into account for composite events, and how duplicate
events are handled. Event instance consumption defines whether unique composite
event or all possible combinations of events are taken into account. The combination of
both parameters also offers the definition of filter pattern similar to the ones applied in
parsing. The algebra and parameters are defined based on binary operators, by nesting
composite events (as shown in profile P3). The introduced semantics can easily be
extended to sets of events.

We introduced our event algebra in both an informal and a formal way. Note that
the formalism used here is similar to the one of the relational algebra. The relational
algebra lacks the concept of ordering, therefore we introduced an ordering relation on
event traces. We applied the event algebra to the application field of transportation
logistics.

We are currently implementing the prototype of a generic parameterized Event No-
tification System (GENAS) that is based on the parameterized event algebra introduced
here. GENAS can be adapted to different application fields using various parameter
settings. It can also be used for mixed application such as the logistics scenarios in-
troduced here. Additionally, our parameterized event algebra offers the possibility to
easily integrate differently structured event sources.
Acknowledgements. We wish to thank the database group at the FU Berlin as well as
Klaus Dittrich for their valuable comments on our approach.

References
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of

items in large databases. In Peter Buneman and Sushil Jajodia, editors, Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, pages 207–216,
Washington, D.C., 26–28 1993.

[2] J.M. Ale and G. Rossi. An approach to discovering temporal association rules. In
Proceedings of the SAC(1) 2000, pages 294–300, 2000.

16

[3] J. Allen. Time and time again: The many ways to represent time. International Journal of
Intelligent Systems, 6:341–355, 1991.

[4] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In The VLDB Journal, pages 53–64, 2000.

[5] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build distributed
applications. In Proceedings of the Seventh ACM SIGOPS European Workshop, pages
9-16, Connemara, Ireland, September 1996., 1996.

[6] A. Buchmann C. Liebig, M. Cilia. Event composition in time-dependent distributed
systems. In Fourth IFCIS Conference on Cooperative Information Systems (CoopIS’99)
(In cooperation with VLDB’99), Edinburgh University, Edinburgh, Scotland, September
2-4 1999.

[7] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification service. In Symposium on
Principles of Distributed Computing, pages 219–227, 2000.

[8] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language for
active databases. Knowledge and Data Engineering Journal, 14:1–26, 1994.

[9] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query
system for internet databases. In Proc. of the ACM SIGMOD Conf. on Management of
Data, 2000, 2000.

[10] X. Chen, I. Petrounias, and H. Heathfield. Discovering temporal association rules in
temporal databases. In Issues and Applications of Database Technology, pages 312–319,
1998.

[11] U. Dayal. The hipac project: Combining active databases and timing constraints, 1988.

[12] K. R. Dittrich and S. Gatziu. Time issues in active database systems. In R. T. Snodgrass,
editor, Proceedings of the International Workshop on an Infrastructure for Temporal
Databases, Arlington, TX, 1993.

[13] S. Gatziu and K. Dittrich. Events in an active object-oriented database system. In Proc. of
the 1st International Workshop on Rules in Database Systems. Springer, September, 1993.

[14] S. Gatziu and K. R. Dittrich. Detecting composite events in active database systems using
petri nets. In RIDE-ADS, pages 2–9, 1994.

[15] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model & implementation. In L.-Y. Yuan, editor, 18th International Conference
on Very Large Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings, pages
327–338. Morgan Kaufmann, 1992.

[16] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification in an active
object-oriented database. In Michael Stonebraker, editor, Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California, June
2-5, 1992, pages 81–90. ACM Press, 1992.

[17] A. Hinze. How does the observation strategy influence the correctness of alerting
services? In Proceedings of the 9. Fachtagung Datenbanksysteme in Büro, Technik und
Wissenschaft, BTW 2001, March 2001.

[18] A. Hinze and D. Faensen. A Unified Model of Internet Scale Alerting Services. In Lucas
Chi-Kwong Hui and Dik Lun Lee, editors, Proceedings of 5th International Computer
Science Conference, ICSC’99 (Internet Applications.), volume 1749 of Lecture Notes in
Computer Science. Springer, 1999.

[19] H. V. Jagadish and O. Shmueli. Composite events in a distributed object-oriented
database. IWDOM, pages 248–268, 1992.

[20] L. Lamport. Times, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

17

[21] L. Liu, C. Pu, R. Barga, and T. Zhou. Differential evaluation of continual queries. In IEEE
Proceedings of the 16th International Conference on Distributed Computing Systems,
pages 458–465, Hong Kong, 27-30 May 1996. IEEE Press. available at
http://web.cs.ualberta.ca/˜lingliu/papers/lcdcs96.ps.

[22] D.L. Mills. Network time protocol (version 3) specification, implementation and
analysis., 1992.

[23] I. Motakis and C. Zanilo. Formal semantics for composite temporal events in active
database rules. JOSI, 37(1), 1997.

[24] S. Navathe and R. Ahmed. A temporal relational model and a query language.
Information Sciences, 49, 1989.

[25] J. Pereira, F. Fabret, H. Jacobesen, F. Llirbat, R. Preotiuc-Prieto, K. Ross, and D. Shasha.
Le subscribe: Publish and subscribe on the web at extreme speed. In Proceedings of the
ACM SIGMOD Conference, 2001.

[26] R.Zhang and E.Unger. Event specification and detection. Technical report, Kansas State
University, jun 1996. available at
http://www.cis.ksu.edu/˜schmidt/techreport/1996.list.html.

[27] S. Schwiderski. Monitoring the Behaviour of Distributed Systems. PhD thesis, Selwyn
College, University of Cambridge, apr 1996.

[28] A. Tansel. A temporal extension to sql. In R. T. Snodgrass, editor, Proceedings of the
International Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June
1993., 1993.

[29] D. Toman. Point-based Temporal Extensions of SQL. In Franois Bry, Raghu
Ramakrishnan, and Kotagiri Ramamohanaroa, editors, Proceedings of the 5th
International Conference on Deductive and Object-Oriented Databases (DOOD), volume
1341. Springer-Verlag, 1997.

[30] S. Yang and S. Chakravarthy. Formal semantics of composite events for distributed
environments. In Proceedings of the International Conference on Data Engineering
(ICDE 99), pages 400–407, March 1999.

[31] D. Zimmer and R. Unland. On the semantics of complex events inactive database
management systems. In Proc. of the ICDE, 1999.

18

