
tion of
quire
ail. The
roces-

ss of
ther

lve this
d on

en[3]
. They
m on
Implementation of A Parallel Algorithm for the
Symmetric Positive Definite Systems of Equations on the

CRAY-T3E

Technical Report B-17-99
Nov. 30, 1999

Rajeev Wankar1

 Rainald Ehrig*
N.S.Chaudhari**

Elfriede Fehr

Freie Universität Berlin
Institut für Informatik

wankar@inf.fu-berlin.de
ehrig@zib.de

fehr@inf.fu-berlin.de
*Konrad-Zuse-Zentrum für Informationstechnik (ZIB) Berlin

**School of Computer Science, DAVV Indore, India

Abstract

A parallel algorithm for the solution of dense Symmetric Positive Definite (SPD) systems of equations Ax = b has
been designed for the implementation on the CRAY T3E. One of the numerically stable methods for the solu
this system is proposed by Delosme & Ipsen [3]. In order to implement this algorithm on the CRAY T3E, we re
to handle the procedures involved in a slightly different way. These implementation issues are discussed in det
actual timings for different communication schemes, on different sets of data values and varying number of p
sors have been tested and reported.

Keywords: SPD, MPI, SHMEM.

Introduction: Symmetric Positive Definite (SPD) systems of equations are a special cla
problem which arises very frequently in many applications like linear programming, wea
forecasting, seismic data processing etc. One of the numerically stable approaches to so
system of equations is Cholesky factorization. Besides factorization, this method base
Cholesky factorization involves forward elimination and back substitution. Delosme and Ips
have given a method which uses hyperbolic rotations to obtain the solution of such system
replaced sequential steps with parallel ones. Straight forward implementation of this algorith

1. This work is supported by the German Academic Exchange Services (DAAD) under the “Sandwich
Model” fellowship with the author.
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 1

s tech-
diate
ved by
tions:
en. In
issue
are

timing

rbolic

ct

on is

on

d-
a computer requires much more memory compared to the standard Cholesky method. In thi
nical report we discuss the issue of effective utilisation of space by modifying many interme
steps of the algorithm given by Delosme and Ipsen. Theoretically, speed up can be achie
replacing multiplications to additions, this issue is also handled. The report consists of 3 sec
In Section 1 we present the brief description of the method proposed by Delosme and Ips
Section 2 we present sequential algorithm, followed by a parallel algorithm and discuss the
of reducing the floating point operations. In Section 3 implementation related issues
addressed. We also discuss space utilisation and time complexity and give the execution
details of different implementations in the form of graphs (Figure 2-7).

Section 1: Algorithm based on hyperbolic Cholesky factorization.

In this section a brief discussion on the method of Delosme and Ipsen[3], based on hype
rotations, for the solution of linear systems of equations

(1.1)
with a symmetric positive definite coefficient matrixA, is given. The Cholesky factor ofA is first
determined by essentially pre-multiplyingA with appropriate hyperbolic rotations, whose produ
is calledQ. Next simple matrix vector multiplication involvingQ to the right hand side of (1.1)
provides a novel way of solving the system. Avoiding forward elimination and back substituti
a very desirable feature for a parallel implementation.

1.1 The hyperbolic Cholesky factorization.

The computation of the Cholesky decomposition,

, upper triangular, (1.2)

of real symmetric positive definite(spd) matrixA = aij , by means of hyperbolic rotations is
calledhyperbolic Cholesky factorization. Its derivation is based on a particular decompositi
of the matrixA:

, (1.3)

whereA(k) has elements

 (1.4)

SinceA is spd, ak,k is strictly positive andA(k) can be written as the difference of the outer pro
uct.

Ax b=

A U
T
U= Un n×

n n×

A A
k()

k 1=

n

∑=

ai j,
k() ai j, i k j i≥,= or j k i j ,≥,=

0 otherwise,

=

 2 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

ts,
, (1.5)

wherevk andwk are row vectors with elements

(1.6)

(1.7)

That is,vk consists of non zero rows ofA(k) scaled by the square root of the diagonal elemen

while wk differs fromvk only in its kth entry. Stacking thevk andwk respectively in upper triangu-
lar matrices

, , (1.8)

one hasA = VTV-WTW. (1.9)

Definition 1.1: A matrix is called pseudoorthogonal if it satisfies

, where I is the identity matrix.

Lemma 1.1: Let RandSbe upper triangular matrices such thatRTR-STS is positive definite,

and let , . Let

 = , where and

A
k()

vk
T
vk wk

T
wk–=

vk j,
ak k,

1 2⁄–
ak j, j k≥

0 otherwise,
=

wk j,
vk j, j k≠

0 j k̇=
=

V

v1

v2

˙

vn

= W

w1

w2

˙

wn

=

2m 2m× Θ

ΘT I 0

0 I–
Θ I 0

0 I–
= m m×

n n×

µk k, r k k,
1–

sk k,= 1 k n≤ ≤

R̃

S̃
Q̂ R

S
Q̂ Q̃

n()
…Q̃

1()
=

Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 3

trian-

any

nd
(1.10)

then is pseudoorthogonal, is upper triangular and is strictly upper triangular (upper
gular with zero diagonal).

Remarks:

1. Since the matrix constitute disjoint rotations, they commute and can be applied in

order. Their product has a very simple expression:

, (1.11)

, (1.12)

. (1.13)

2. The diagonal elements of have same sign as the corresponding diagonal elements ofR; thus

if R has a positive diagonal, also has a positive diagonal.

Theorem 1.1 (The Hyperbolic Cholesky Algorithm):

Let A be a spd matrix andV andW be upper triangular matrices as defined in (1.6) a

(1.7), so thatA = VTV-WTW. Set

, (1.14)

and apply the sequence of operations

, (1.15)

q̃ij
k()

1 i j= k or i j= n k,+≠ ≠

1 µk
2–

–()
1– 2⁄

i j k or i j= n k,+= = =

1 µk
2

–()–
1– 2⁄

µk i j,() k n k+,() or (i, j) = (n+k, k),=

0 otherwise,

=

Q̂ R̃ S̃

Q̃
k()

Q̂

q̂k k, q̂n k n k+,+ 1 µk
2

–()
1 2⁄–

1 k n≤ ≤,= =

q̂k n k+, q̂n k k,+ 1 µk
2

–()
1 2⁄–

µk– 1 k n≤ ≤,= =

q̂ij 0= i j (mod n)≠,

R̃

R̃

n n×

R
0()

S
0()

V

W
=

R
l 1+()

S
l 1+()

I 0

0 P
Q̂

l() R
l()

S
l()

=

 4 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

spd

he

e

tem

o be

part
,

where is obtained fromR(l) andS(l) in the same way as is constructed fromR andS in

lemma 1.2, and whereP is the circular permutation matrix withP1,n = 1 andPi,i-1 = 1,

. ThenR(n) = U, the Cholesky factor ofA, andS(n) = 0.

Remarks:

The transformation performed by the hyperbolic Cholesky algorithm is denoted by

. (1.16)

The matrixQ is pseudoorthogonal, since it is the product of pseudoorthogonal matrices.

1.1 Application of hyperbolic rotations to the solution of linear systems:

The hyperbolic Cholesky algorithm determines simultaneously the Cholesky factor of an

matrix and a set of parameters , which defines t

hyperbolic rotations that make up the matrixQ. For the solution of the spd system , th

above algorithm could be used to find followed by forward elimination to solve sys

and by back substitution to solve . Instead, the above algorithm can als

used to find parameter followed by the application of the hyperbolic rotations to theb in a

particular way to get the solution vectorx.

The algorithm for the solution of can be summed up as follows: Let be the upper

of and its strictly upper triangular part (=D2 +). Using the hyperbolic Cholesky

algorithm as specified in the theorem, express the matrixQ as a product of hyperbolic rotations
such that

, (1.17)

where

, (1.18)

l 0 … n 1–, ,=

Q̂
l()

Q̂

n n×
2 i n≤ ≤

Q I 0

0 P
Q̂

n 1–()
… I 0

0 P
Q̂

l()
… I 0

0 P
Q̂

0()
=

U

A n n 1–() 2⁄ µk
l()

1 l n 1–≤ ≤ 1 k n≤ ≤, ,

Ax b=

U

U
T

y b= Ux y=

µk
l()

Ax b= Aα

A Aβ Aα Aβ

Q∆
Aα

Aβ

U

0
=

∆ D
1–

0

0 D
1–

=

Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 5

SPD.
time

elab-
e is

rbolic
onal

row

can

ector.
andD = diag .

Apply the same operation to to obtain

, (1.19)

and then apply these operations essentially in reverse order to getx from

, (1.20)

where is an arbitrary real number, which can be equal to 0 or 1 for convenience.

and QT is given by

. (1.21)

Section 2: A parallel algorithm for SPD:

In this section we first present the sequential algorithm and then parallel algorithms for the
We discuss the modifications made for the implementation on the CRAY T3E and analyse
complexity. The issue of saving memory by avoiding many intermediate calculations is also
orated. By observing the parallel algorithm presented in [3], we see that the maximum tim
needed to obtain the hyperbolic Cholesky factorization. In this step besides the hype
Cholesky factor R, we obtain hyperbolic rotations which makes a pseudoorthog

matrix . We observe the following things.

1. The multiplication of a matrix with another matrix , whereP is a

circular permutation matrix, is a sequence of row interchange operations. The

2nof the second matrix becomes the rown+1, the rown+1 becomes rown+2 and so on.
The row2n-1 becomes row2n.

2. Instead of calculating a pseudoorthogonal matrix in each iteration, we

calculate rotations and later use them in the right hand side to get the solution v

The above mentioned observations leads us to a simple sequential algorithm 2.1.

a11
1 2⁄ … ann

1 2⁄, ,()

b

b

Q∆ b

b

U
T–
b

L
T–
b

=

x I I,()∆Q
T αU

T–
b

1 α–()L T–
b

=

α

Q
T

Q̂
0() I 0

0 P
1–

Q̂
1() I 0

0 P
1–

…Q̂
n 1–() I 0

0 P
1–

=

µ 2n 2n×
Q

2n 2n× 2n 2n× I 0

0 P

n n×

2n 2n× Q
k

µ b
 6 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

 Algorithm 2.1

for i:= 1 to n-1do
begin

for j := i+1 to n
 begin
 A(j,i) := S(j,j-i)/R(j,i)

 t1 :=

 t2 := -A(j,i) * t1;
 for k := j to n

 begin
 t3 := R(k,j);
 R(k,j) := t1*t3+t2*S(k,j-i);
 S(k,j-i) := t2*t3+t1*S(k,j-i);
 end;

 end;
 end;

Algorithm 2.1 shows that the second and the third loop with indicesj andk can be parallelised
since within this loop the algorithm works in every step on different rows ofA, RandS. The Par-
allelisation of the algorithm 2.1 leads to the algorithm 2.2.

Algorithm 2.2

for i:= 1 to n-1do
begin

for all j := i+1 to n in parallel do
 begin
 A(j,i) := S(j,j-i)/R(j,i)

 t1 :=

 t2 := -A(j,i) * t1;
 for all k := j to n in parallel do

 begin
 t3 := R(k,j);
 R(k,j) := t1*t3+t2*S(k,j-i);
 S(k,j-i) := t2*t3+t1*S(k,j-i);
 end;

 end;
 end;

From algorithm 2.2 we further observe that:

1 1 A
2

j i,()–()⁄

1 1 A
2

j i,()–()⁄
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 7

.

is

epre-
1. The first row of R is never used and the row k of R is used only if and

Therefore we do not need to re-compute row of R for every valuei of the outermost
loop.

2. Each element Sp,q of S is used if and and later set to zero. Therefore it

not needed to re-compute Sj-i,j for , for all i, j.

These considerations lead us to the following modified algorithm 2.3.

 Algorithm 2.3

for i := 1 to n-1do
begin

for all j := i+1 to n in parallel do
 A(j,i) := S(j,j-i)/R(j,j)

begin
 A(j,i) := S(j,j-i)/R(j,i);

 t1 := ;

 t2 := -A(j,i) * t1;
if (j=i+1) then

 for all k := j+1 to n in parallel do
 S(k,j-i) := t2*R(k,j) + t1*S(k,j-i)

 else
 begin
 R(j,j) := t1 *R(j,j) + t2*S(j,j-i);

 for all k := j+1 to n in parallel do
 begin

 t3 := R(k,j);
 R(k,j) := t1*t3+t2*S(k,j-i);
 S(k,j-i) := t2*t3+t1*S(k,j-i);

 end;
 end;

 end;
 end;

2.1 Operation Counts: The innermost loop with indexk of the parallel algorithm 2.3 is one
which can be used to calculate the sequential computing time of the algorithm 2.3. If T(n) r
sents the time needed for execution then we express:

j k= i k 1–=

i 1+

i q p–= j q=

k j=

1 1 A
2

j i,()–()⁄

T n() n n 1–() n 2–() 6⁄ n 2>
0 Otherwise

=

 8 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

ti-

oat-
d by
t the
ing
with

. Sim-
Since the innermost loop with indexk consists of 4 multiplications and if the cost of each mul

plication is constant then the total execution time of the two steps inside the loop is fl
ing point operations. Theoretically, the actual cost of the algorithm is generally determine
multiplication and not by addition/subtraction. Closely observing the algorithm, we see tha
innermost loop consists of four multiplications and two additions. By applying the follow
observations we can replace multiplications to additions and get a new parallel algorithm 2.4

reduced sequential time .

Algorithm 2.4

for i := 1 to n-1do
begin

for all j := i+1 to n in parallel do
 A(j,i) := S(j, j-i)/R(j, j)

begin
 A(j,i) := S(j, j-i)/R(j, i);

 t1 := ;

 t2 := -A(j, i) * t1;
 t3:= (t1-t2)/2;
 t4 := (t1+t2)/2;

if (j=i+1) then
for all k := j+1 to n in parallel do

 S(k, j-i) := t2*R(k, j) + t1*S(k, j-i)
 else

 begin
 R(j, j) := t1 *R(j, j) + t2*S(j, j-i);

for all k := j+1 to n in parallel do
 begin

 t5 := t3 * (R(k, j) + S(k, j-1));
 t6 := t4 * (R(k, j) - S(k, j-1));
 R(k, j) := t5 + t6;
 S(k, j-i) := t5 - t6;

end;
 end;

 end;
 end;

It can be seen that the reduction in multiplications causes increase in additions/subtractions
ilar tactics can be applied to find the solution of linear systems as well.

2n
3

3⁄

n
3

3⁄

1 1 A
2

j i,()–()⁄
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 9

ems of
ple-

o cor-
tween

in a
mple-
s. In

tines
ach
n the
[7,12].
ts and it
multi
tribu-
n indi-

ution
orithm
ted the
big

very
f-
h we
the
glo-
cific
bal

-
gure 1
in
i-
Section 3: Implementation on CRAY:

There are many strategies which can be adopted for the implementation of the SPD syst
equations on a parallel machine. In this work we have investigated the effect of different im
mentation strategies. During the design of any algorithm on parallel computer, one has t
rectly make use of certain basic communication routines in order to exchange data be
different processors. The communication patterns may be:

1. Point to point communication.
2. Common broadcast by a processor to all other processors.
3. Collective sending operation to one processor
4. Collective sending from all to all processors.

Combinations of some or all of them are normally applied for the effective communication
parallel algorithm. Speed of the parallel algorithm depends on the routines we use. We i
mented the algorithm using different communication possibilities and different sets of routine
the first implementation we used CRAY specific shared memory communication rou
(SHMEM library) [13], which are very fast but have the problem of portability. In this appro
we used the cyclic row distribution on processors and the program is written in FORTRAN. I
second implementation we used Message Passing Interface (MPI) communication routines
These are portable and the same algorithm can be executed on heterogeneous environmen
is faster than the first approach as well. In this approach the program is written in C. In C the
dimensional arrays are stored in a row major order in the memory. We used the column dis
tion approach on processors since the operations are performed on elements whose colum
ces increase rapidly. We have implemented the same algorithm in C using row distrib
approach. We have shown how features of languages can affect execution time of the alg
using graphs. The programs are executed on the CRAY T3E having 256 processors. We tes
performance of the algorithm on two different types of PEs (small 450MHz/128MB and
600MHz/512MB). In this section we describe only the column version of the algorithm.

For the sake of simplicity we assume that the problem size , thus e
processor is havingk, nblockof the SPD matrixA. Since the matrix is symmetric and positive de
inite, we only need to store lower(upper) part along with the diagonal entries. In our approac
store the entries ofA in upper triangular part and the lower part of the matrix is used to store
hyperbolic rotations, thus saving locations. In this implementation we used a
bal arrayprocessorwhich is used to store the identity of the processor which holds the spe
columns. Thelocalindex is used to store the local index of a column obtained from the glo
index. We used arrays,row androwlower, locally at each processor. Arrayrow is used to find the
counter for the column on a processor and arrayrowlower is used for knowing the number of col
umns managed by the particular processor in the right hand side of the actual column. Fi
shows the distribution of columns of the matrixA on different processors, entries are converted
to local indices. Here we have takenn = 8, blocksize = 2and number of processors = 2. The var
ablenloc = 4.

n k nblock× nproc×=

n n 1–()× 2⁄
10 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

ng to

a 1.1

te the
ns are
The most time consuming step of the algorithm is obviously the factorization step. Referri

the subsection 1.1, it is clear that the entries ofR(l), S(l) are determined by the entries ofR(l-1), S(l-

1), , in a manner described in Theorem 1.1. Since we have distributed columns ofA, Son

n processors, we calculate at every processor according to the definition given in Lemm
and store them to a portion of a one dimensional arraybuffer. The arraybuffer is then broadcasted
by all the processors in each iteration of the factorization step, since, the entries to calcula
rotations must be available at other processors. After this broadcast step is over, the rotatio
calculated according to the equation 1.8 and stored in the lower triangular part of the matrixA, but
only at the respective processors. Entries ofA are over written by the new entries ofR. The loop is

a11 a12 a13 a14 a15 a16 a17 a18

a22 a23 a24 a25 a26 a27 a28

a33 a34 a35 a36 a37 a38

a44 a45 a46 a47 a48

a55 a56 a57 a58

a66 a67 a68

a77 a78

a48

a11 a12 a13 a14

a22 a23 a24

a33 a34

a43 a44

a53 a54

a64

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a43 a44

a53 a54

a63 a64

a73 a74

a84

a42

Matrix A on Processor 0 Matrix A on Processor 1

Figure 1.

{ { {{

1 l n≤ ≤
µ

Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 11

tion
er tri-
ol-

trix

ange
ory.

g
nd is
for

erbolic
with
ber of
sion of

rs and
repeatedn times. Here we do not calculate a pseudoorthogonal matrix in each itera
of the factorization step, instead we perform shift operation on the rotations stored in the low
angular part of a matrixA, while calculating the solution. We have used the highly optimized c
lective communication routineMPI_Bcast to accomplish the task in this step.

In order to get the solution of the system, we need to calculate the pseudoorthogonal maQ
described in the equation 1.18. As we already stated in the algorithm, multiplication of a

matrix with another matrix , whereP is a circular permutation matrix, is a

sequence of row interchange operations. The row2nof the second matrix becomes the rown+1,

the rown+1 becomes rown+2 and so on. The row2n-1becomes the row2n. We see in the last
steps of the algorithm that the rotations are stored in the lower triangular part. The interch
operation or a shift operation can be done efficiently by every processor within its local mem
This reduces the processor communication if we use cyclic column distribution.

3.1 Analysis of space:

In the algorithm implemented for CRAY, we need arraysprocessor, localindexof dimension
, rowlower of the dimension at every processor. The dimension ofb, bl, bu, diagis

, wherenloc is the number of columns managed by a particular processor. Arraysa andsare

of size . Arraysrow, qe1are one dimensional of size“size” where “size” is the number
of processors used for the execution of the algorithm. The arraybuffer is of sizen. Some variables
for intermediate processing and index handling are also used.

3.2 Analysis of time:

We have tested the algorithm for different values ofn with varying number of processors usin
three different strategies. The first one is row distribution approach with FORTRAN, the seco
row distribution with C and the third one is column distribution with C. The algorithm is tested
different block sizes. The common choices are 16 and 8. It has been observed that the hyp
Cholesky factorization takes less time with block size 16 but the overall time for the solution
block size 8 is better. The program is tested for n = 4096, 2048, 1024, 512 and the num
processors used are 2,4,8 and 16. The algorithm is compared with the fastest parallel ver
the classical Cholesky algorithm on the T3E machines[14].

The amount of time needed by the algorithm on different sets of data with varying processo
with the column distribution approach is described by the table presented below.

2n 2n×

2n 2n×

2n 2n× I 0

0 P
n n×

n 2+ n 1+

nloc

n n× loc
12 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

thm as
for the
t
-
ely row
essors
y and
n the
taining
lution
We have presented the number of processors used and the execution time of the algori
graphs. Figure 2 shows the graph between the number of processors and the time required
hyperbolic Cholesky factorization for the problem sizen = 2048. From figure 4 it is observed tha
the communication overhead increases the execution time forn = 512 when the number of proces
sors are more than 12. Figure 5 shows the execution time between the two approaches nam
and column. The difference between the execution time increases when the number of proc
are reduced. In figure 6 we compare the execution time of the classical parallel Cholesk
Hyperbolic Cholesky algorithm and can see that the classical method is still faster tha
approach used in this paper. Figure 7 gives the comparison of these two methods while ob
the solution. It can be seen that the hyperbolic Cholesky algorithm is faster in obtaining so
when the number of processors are more than 8.

Table 1: Overall time required by the algorithm with column distribution approach

Problem
Size

P = 2 P = 4 P = 8 P = 16

512 1.03 Sec. 0.72 Sec. 0.56 Sec. 0.58 Sec.

1024 6.09 Sec. 3.96 Sec. 2.94 Sec. 2.46 Sec.

2048 39.53 Sec. 23.69 Sec. 15.69 Sec. 12.09 Sec.

4096 168.82 Sec. 94.15 Sec. 62.95 Sec.

Problem size n = 2048

0
5

10
15
20
25
30
35
40
45
50

0 2 4 6 8 10 12 14 16 18

Number of processors

T
im

e
in

 s
ec

on
ds

Col. distribution

Figure 2
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 13

Problem size n = 1024

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

Number of processors

T
im

e
in

 s
ec

on
ds

Col. distribution

Figure 3

Problem size n = 512

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 2 4 6 8 10 12 14 16 18

Number of Processors

T
im

e
in

 s
ec

on
ds

Col. distribution

Figure 4
14 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

Problem size n = 1024

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18

Number of processors

T
im

e
in

 s
ec

on
ds

Col. distribution

Row distribution

Figure 5

Problem size n = 2048

0

5

10

15

20

25

30

35

40

2 4 8 16

Number of processors

T
im

e
in

 s
ec

on
ds Hyperbolic Cholesk y

Algo.

Cholesky Algorithm

Figure 6
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 15

nted.
a and
hm on

with
in the
mized
pared
algo-
ehav-
ed-up
Conclusion:

A parallel algorithm for the solution of special linear system of equations has been prese
Space and time complexities with the different implementation routines, different set of dat
different processors have been calculated and reported. The implementation of the algorit
Message Passing Interface MPI is both fast and portable. Comparing results of this algorithm
the standard Cholesky factorization we infer that both versions of the algorithm, presented
report, are slower. This is because the standard Cholesky factorization uses highly opti
mathematical and other routines. However, the hyperbolic Cholesky algorithm is faster com
to the Cholesky classical algorithm in obtaining the solution. We have seen the effect of the
rithm on sparse matrices too. The work can further be extended to investigate, in detail, the b
iour of the algorithm on special patterns of sparse matrices. The work is in progress to spe
the algorithm by adopting different implementation possibilities.

problem size n = 2048

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

2 4 8 16

Number of processors

T
im

e
in

 s
ec

on
ds Cholesky algorithm

Hyperbolic Cholesk y
algorithm

Figure 7
16 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

With

12,

l-
References:

[1] Aho A., J. Hopcroft and J. Ullman,The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] Bauer B. E., Practical Parallel Programming,Academic Press Inc., 1992.

[3] Delosme J.M., Ilse C.F. Ipsen, “Parallel Solution of Symmetric Positive Definite Systems
Hyperbolic Rotations”,Linear Algebra and its Applications, Special Volume on Parallel
Computing, North Holland, pp. 75-111, Vol. 77, May 1986.

[4] Gibbons A. And Wojciech Rytter,Efficient Parallel Algorithms, Cambridge University
Press, Cambridge, May 1988.

[5] Golub G.H. and Charles and F. Van Loan,Matrix Computations, John Hopkins Press, Balti-
more, MA, 1983.

[6] Golub G.H. and James Ortega,Scientific Computing: An Introduction with Parallel Com-
puting, Academic Press Inc., 1993.

[7] Gropp W., Ewing Lusk and Anthony Skjellum,Using MPI, Parallel Portable Programming
with the Message Passing Interface, MIT Press 1995.

[8] Horowitz E. And S.Sahni,Fundamentals of Computer Algorithms,Addison-Wesley, Com-
puter Science Press, NY, 1978.

[9] Lancaster P.,M. Tismenetsky, The Theory of Matrices, Academic Press Inc., (1985).

[10] Lester B. P., The Art of Parallel Programming, Prentice Hall, Englewood Cliffs, N.J.
(1993).

[11] Louis A. Hageman and David M. Young,Applied Iterative Methods, Academic Press Inc.,
NY, 1981.

[12] MPI: A message Passing Interface Standard, Message Passing Interface Forum, June
1995.

[13] R. Barriuso, A. Knie:SHMEM User’s Guide for FORTRAN, Rev. 2.2.Cray Research Inc.
1994.

[14]. Robert A. van de Geijn, Using PLAPACK, The MIT Press, Cambridge, 1997.

[15] Stewart G.W.,Introduction to Matrix Computations, Academic Press Inc., SanDiego Ca
ifornia 1973.
Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E 17

l,

) of

Sys-
[16] Vipin Kumar et al.,Introduction to Parallel Computing, Design and Analysis of Algo-
rithms, The Benjamin Cummings Publishing Company Inc., California, 1994.

[17] Wankar R. and N.S.Chaudhari, “Parallel Cholesky Factorization Algorithm”,National Con-
ference on current trends in Information Technology, pp. 23-24, June 1995, Bhopa
India.

[18] Wankar R., “Parallel Algorithms for Solving Symmetric Positive Definite System (SPD
Equations”,International Journal of Management and Systems,pp. 311-324, Vol. 11,
No. 3, Sept.-Dec. 95.

[19] Wankar R., E. Fehr and N. S. Chaudhari, “A Fast Parallel Algorithm for Special Linear
tems of Equations using Processor Arrays with Reconfigurable Bus Systems”,Technical
Report B-2-99,January 29, 1999, Freie Universität Berlin, Germany.
18 Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations on the CRAY-T3E

	Implementation of A Parallel Algorithm for the Symmetric Positive Definite Systems of Equations o...
	Table 1: Overall time required by the algorithm with column distribution approach

