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Discretization

Backward propagator
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Discretization

20

10

0

0.2
0l
G
01
0.2
01
Z
0.1
0.2
0l
Z
01
0.2
01
G
0.1
0.2

Prinz et al, JCP 134, 174105 (2011)

— Potential '
— Stationary Density (not normalized) i
L \_/l/—\'\_/ |
— Error
—— Eigenfunction P,(x)
—— Approxim. Qp,(x)
i 1 l L
. I '
— o
- -
- § 2= 0023 .
B -
- -
. 3, =0.0017 -
_ D
1 l 1 l
0 20 40 60 80

2

3000

2500

.

:

scale t,

1500

Implied time

1000

500

- s CXxactt,

—— 2 bins split at x = 50

—— 2 bins split at x =40

~— 10 bins split at x = 10,20.....90
—— 6 bins split at x = 40,45,50,55,60

] ) | ] | ! ]

1000 2000 3000 4000
Lagtime T

5000



There are two flavors of discretization/projection error

good discretization

bad discretization
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There are two flavors of discretization/projection error

good discretization
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bad discretization
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There are two flavors of discretization/projection error

good discretization bad discretization
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There are two flavors of discretization/projection error

good discretization bad discretization
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timescale [ steps

good discretization
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There are two flavors of discretization/projection error
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Projection/discretization error leads to systematic errors

® Discretization and projection errors hampers our ability to
distinguish between meta-stable states
® Apparent non-Markovian behavior of the dynamics.

Noé et al. JCP (2013) 139, 184114
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Projection/discretization error leads to systematic errors

® Discretization and projection errors hampers our ability to
distinguish between meta-stable states
® Apparent non-Markovian behavior of the dynamics.

Remedies:
® |ncrease lag-time when estimating MSM
® |mprove featurization and clustering

However we know that the underlying dynamics is Markovian,
can we exploit fact in some way?

Noé et al. JCP (2013) 139, 184114



Hidden Markov state models

We assume the existence of an underlying (hidden) Markovian dynamics
described by the transition probabilities P = {p;}

Instead of observing the state h; directly we observe some distorted
representation, s; with a probability Xns,— the emission probabilities.
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Hidden Markov state models

We assume the existence of an underlying (hidden) Markovian dynamics
described by the transition probabilities P = {p;}
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Hidden Markov state models

We assume the existence of an underlying (hidden) Markovian dynamics
described by the transition probabilities P = {p,}

Instead of observing the state h; directly we observe some distorted
representation, s; with a probability Xns,— the emission probabilities.
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Maximum-Likelihood and Bayesian estimators are available: Noé etal. JCP (2013) 139, 184114
Chodera et al. arxiv:1108:1430



Hidden Markov state models — an alternative to MSMs

® Models the system dynamics by estimation of transition
probabilities of hidden Markov process, and emission
probability distributions.

® \We need to decide the number of states of the hidden
Markov process a priori (the number of meta-stable states)
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® Models the system dynamics by estimation of transition
probabilities of hidden Markov process, and emission

probability distributions.
® \We need to decide the number of states of the hidden
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Let's revisit our two well potential from before:
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Hidden Markov state models — an alternative to MSMs

® Models the system dynamics by estimation of transition
probabilities of hidden Markov process, and emission
probability distributions.

® \We need to decide the number of states of the hidden
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Let's revisit our two well potential from before:
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Hidden Markov state models — an alternative to MSMs

® Models the system dynamics by estimation of transition
probabilities of hidden Markov process, and emission
probability distributions.

® \We need to decide the number of states of the hidden
Markov process a priori (the number of meta-stable states)
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We get a robust model of the dynamics which simultaneously resolves

meta-stable states.




Questions?



