Variational Approach to Markov Processes (VAMP)

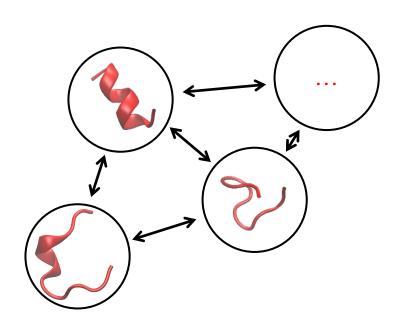
Identification of molecular order parameters and states from nonreversible MD simulations

Fabian Paul
Computer Tutorial in Markov Modeling
18-FEB-2020

Recap: the spectral theory of MSMs

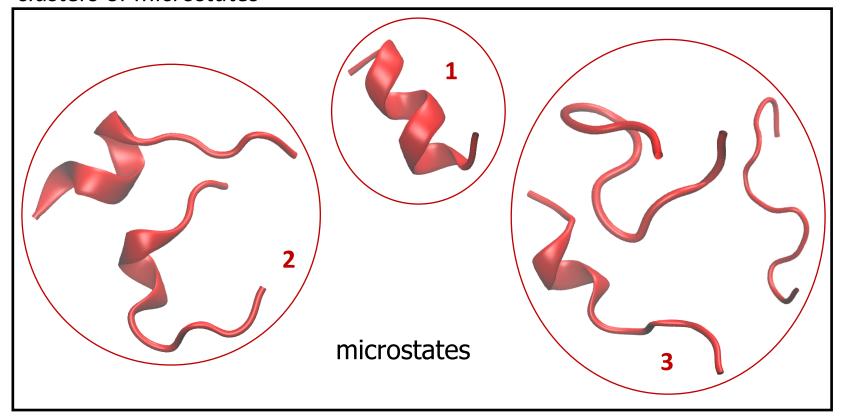
- A Markov state model consists of:
 - 1. a set of states $\{s_i\}_{i=1,...N}$
 - 2. (conditional) transition probabilities between these states

$$T_{ij} = \mathbb{P}(s(t+\tau) = j \mid s(t) = i)$$



Markov state models: estimation

 Markov model estimation starts with: grouping of geometrically^[1] or kinetically^[2] related conformations into clusters or microstates



^[1] Prinz et al., J. Chem. Phys. **134**, 174105 (2011)

³

Markov state models: estimation

• We then assign every conformation in a MD trajectory to a microstate.

time <i>t</i>	τ	2τ	3τ	4τ	5τ	6τ	7τ	
trajectory				5	2		2	
microstate s	1	1	2	3	3	2	3	

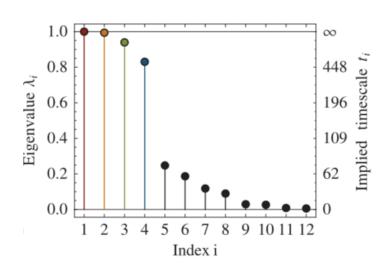
 We count transitions between microstates and tabulate them in a count matrix C

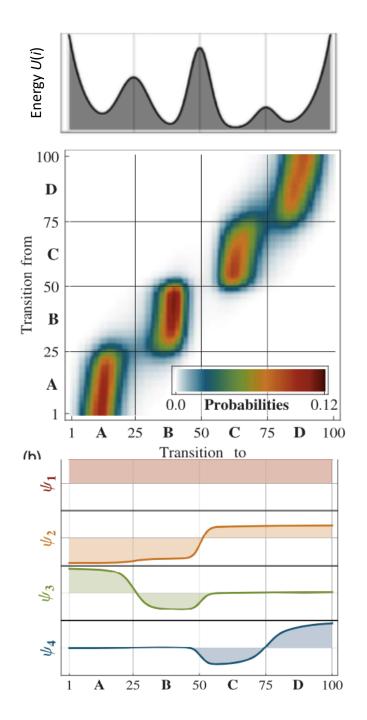
e. g.
$$C_{11} = 1$$
, $C_{12} = 1$, $C_{23} = 2$, ...

- We estimate the transition probabilities T_{ij} from C.
 - Naïve estimator: $\hat{T}_{ij} = C_{ij} / \sum_k C_{ik}$
 - Maximum-likelihood estimator [1]
- [1] Prinz et al., J. Chem. Phys. **134**, 174105 (2011)
- [2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013)

The spectrum of a reversible T matrix

- The large eigenvalues of the transition matrix and their corresponding eigenvectors encode the information about the slow molecular processes.
- Flat regions of the eigenvectors allow to identify the metastable states.





Prinz et al., J. Chem. Phys. 134, 174105 (2011)

Both MSMs and TICA make use of the same spectral method

The spectral method (working with eigenvalue and eigenvector) is not limited to Markov state models.

Estimation of MSMs

$$T(\tau) = \frac{C_{ij}(\tau)}{C_i}$$

In matrix notation

$$\mathbf{T}(\tau) = \mathbf{C}(0)^{-1}\mathbf{C}(\tau)$$

Eigenvalue problem:

$$\mathbf{T}(\tau)\mathbf{v} = \lambda\mathbf{v} \iff \mathbf{C}(0)^{-1}\mathbf{C}(\tau)\mathbf{v} = \lambda\mathbf{v} \iff \mathbf{C}(\tau)\mathbf{v} = \lambda\mathbf{C}(0)\mathbf{v}$$

- The last equation is known as the TICA problem. All equations generalize to the case where ${\bf C}(0)$ and ${\bf C}(\tau)$ are not count matrices, but correlation matrices.
- The indices *i*, *j* don't longer refer to states but to *features*.

VAC and VAMP

Variational approach to conformational dynamics VAC (Rayleigh-Ritz for classical dynamics)

Any autocorrelation is bounded by the system-specific number $\hat{\lambda}$, that is related to the system-specific autocorrelation time \hat{t} by $\hat{\lambda} = e^{-\tau/\hat{t}}$.

$$\operatorname{acf}(\psi;\tau) := \frac{\sum_{t}^{T-\tau} \psi(x(t)) \psi(x(t+\tau))}{\sum_{t}^{T-\tau} \psi(x(t)) \psi(x(t))} = \frac{\langle \psi, \mathrm{T} \psi \rangle_{\pi}}{\langle \psi, \psi \rangle_{\pi}} \leq \hat{\lambda}$$

• The maximum is achieved if ψ is an eigenfunction of T.

Proof:

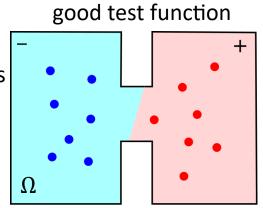
Expand
$$\psi$$
 in an (orthonormal) eigen-basis of T:
$$\psi(x) = \sum_i c_i \, \phi_i(x), \qquad \langle \psi, \psi \rangle_\pi = \sum_i c_i^2 > 0$$

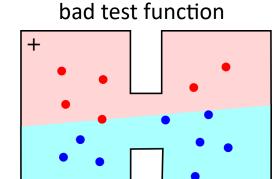
$$\langle \psi, \mathrm{T} \psi \rangle_{\pi} - \hat{\lambda} \langle \psi, \psi \rangle_{\pi} = \sum_{i} c_{i}^{2} \lambda_{i} - \sum_{i} c_{i}^{2} \hat{\lambda} = \sum_{i} c_{i}^{2} (\lambda_{i} - \hat{\lambda}) \leq 0$$

- If $\hat{\lambda}$ is $\max_{i} \lambda_{i}$ the largest of T's eigenvalues, the inequality holds.
- Result can only be zero if $c_i=0$ for $i\neq j$ and $\lambda_j=\max_i\lambda_i\Rightarrow \psi(x)\propto \phi_{\max}(x)$
- Remark: the variational approach generalizes to the optimization of multiple eigenfunctions. $\hat{\lambda}$ is replaced by the sum of the eigenvalues $R_k = \sum_{i=1}^k \lambda_i$

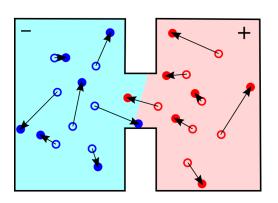
Interpretation of variational principle

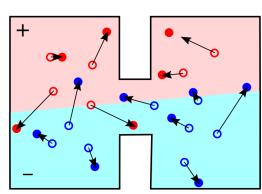
1. Pick some test function $\chi_{\text{test}}(\mathbf{x})$ and pick some test conformations $\mathbf{x}_{i,\text{inital}}$ distributed according to equilibrium distribution π





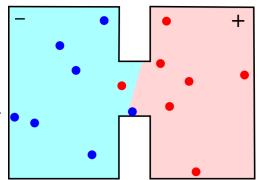
2. Propagate $\mathbf{x}_{i,\text{inital}}$ with the the MD integrator. Call result $\mathbf{x}_{i,\text{final}}$.

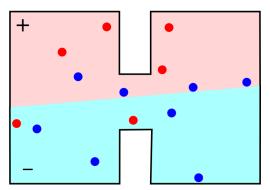




3. Correlate $\chi_{\text{test}}(\mathbf{x}_{\text{inital}})$ with $\chi_{\text{test}}(\mathbf{x}_{\text{final}})$.

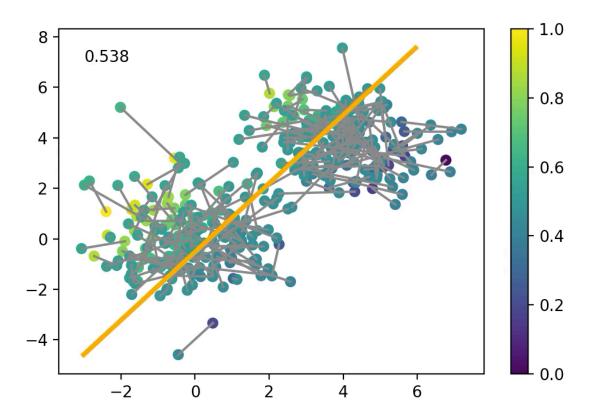
$$score = \frac{\sum_{i=1}^{N} (\chi(\mathbf{x}_{i,inital}) - \overline{\chi}) \cdot (\chi(\mathbf{x}_{i,final}) - \overline{\chi})}{\sum_{i=1}^{N} (\chi(\mathbf{x}_{i,inital}) - \overline{\chi}) \cdot (\chi(\mathbf{x}_{i,inital}) - \overline{\chi})}$$





Gradient-based optimization of function parameters

Parameters \mathbf{p} of $\chi_{\text{test}}(\mathbf{x}; \mathbf{p})$ can be optimized with gradient-based techniques. Make use of the gradient of the VAC or VAMP score, the gradient of the test function and off-the-shelf optimizers such as ADAM or BFGS.



Reversible dynamics

 In equilibrium, every trajectory is as probable as its time-reversed copy

$$\mathbb{P}(s(t+\tau)=j \text{ and } s(t)=i) = \mathbb{P}(s(t+\tau)=i \text{ and } s(t)=j)$$

$$\mathbb{P}(s(t+\tau) = j \mid s(t) = i)\mathbb{P}_{eq}(s(t) = i) = \mathbb{P}(s(t+\tau) = i \mid s(t) = j)\mathbb{P}_{eq}(s(t) = j)$$

$$\pi_i T_{ij} = \pi_j T_{ji}$$

- In mathematician's notation $\langle \mathbf{e}_i, \mathbf{T} \mathbf{e}_j \rangle_{\pi} = \langle \mathbf{e}_j, \mathbf{T} \mathbf{e}_i \rangle_{\pi}$ where $\langle \mathbf{x}, \mathbf{y} \rangle_{\pi} = \sum_i x_i y_i \pi_i$
- **T** is a symmetric matrix w.r.t. to a non-standard scalar product.
- T has real eigenvalues and eigenvectors (linear algebra I).

The problem with nonreversible systems

- $R_k = \sum_{i=1}^k \lambda_i$ where λ_i are the true eigenvalues.
- For nonreversible dynamics $\langle \mathbf{e}_i, \mathbf{T} \mathbf{e}_j \rangle_{\pi} \neq \langle \mathbf{e}_j, \mathbf{T} \mathbf{e}_i \rangle_{\pi}$
- There might not even be a well-defined π .
- Eigenvalues and eigenvectors will be complex.
- Variational principle doesn't work. $acf(\psi) \leq \hat{\lambda} \in \mathbb{C}$ makes no sense. One can't order complex numbers on a line.
 - Optimization of models not possible
 - Feature selection not possible
- Is there any way to fix this? Can we maybe find some other operator that is related to dynamics and that is symmetric?

A possible solution: VAMP

Variational approach to Markov processes

Introduce the "backward" transition matrix

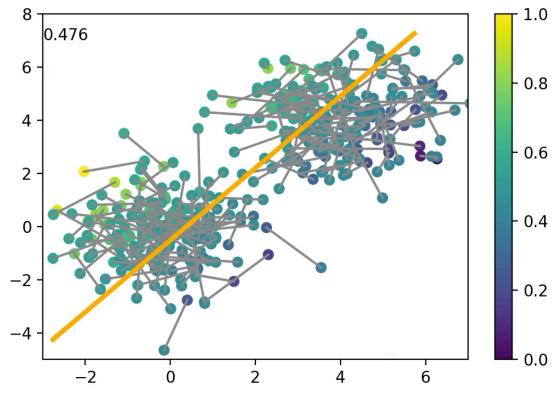
$$\mathbf{T}_{\mathbf{b}} := \mathbf{C}(N)^{-1}\mathbf{C}(-\tau) = \mathbf{C}(N)^{-1}\mathbf{C}^{\mathsf{T}}(\tau)$$

i.e. estimate MSM/TICA from time-reversed data, where

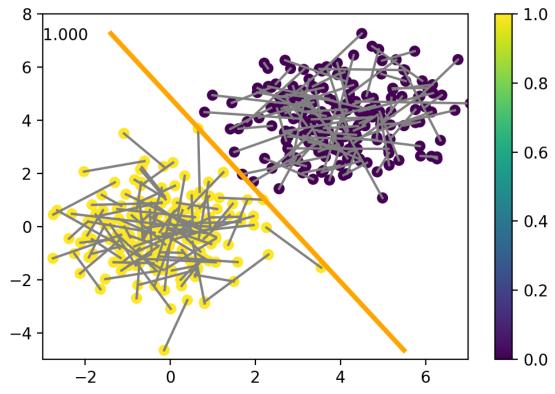
$$C_{ij}(-\tau) := \sum_{t=\tau}^{N} f_i(x(t-\tau)) f_j(x(t))$$
$$C_{ij}(N) := \sum_{t=\tau}^{N} f_i(x(t)) f_j(x(t))$$

- Introduce the forward-backward transition matrix $\mathbf{T}_{\mathrm{fb}}\coloneqq\mathbf{T}\mathbf{T}_{\mathrm{b}}$ and $\mathbf{T}_{\mathrm{bf}}:=\mathbf{T}_{b}\mathbf{T}$
- Can show that T_{fb} and T_{bf} are symmetric without any reference to a stationary vector (symmetry is built into the matrices).
- Eigenvalues and eigenvectors of \mathbf{T}_{fb} and \mathbf{T}_{bf} are real.
- They fulfill a variational principle $\|\mathbf{C}^{-1/2}(0)\mathbf{C}(\tau)\mathbf{C}(N)^{-1/2}\| \leq R$

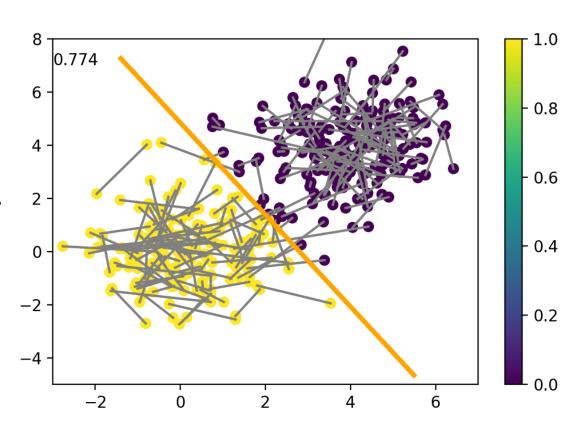
- The model parameters (in this example parameters of the line and steepness of the transition) were optimized for a particular realization of the dynamics.
- Didn't we say that the eigenfunctions and eigenvalues were an intrinsic property of the molecular system?
- So the eigenfunctions should be the same if we repeat the analysis with a second simulation of the same system.



- The model parameters (in this example parameters of the line and steepness of the transition) were optimized for a particular realization of the dynamics.
- Didn't we say that the eigenfunctions and eigenvalues were an intrinsic property of the molecular system?
- So the eigenfunctions should be the same if we repeat the analysis with a second simulation of the same system.



- Ideally, we want to tell if the solution is robust at a single glance by measuring the robustness with one number.
- The VAMP score or VAC score (also called GRMQ¹) lends itself to this task.
- Keep all the trained model parameters fixed (here the line parameters and the steepness of the transition), plug in new data and recompute the test autocorrelation.
- The test autocorrelation will be lower in general, which means that the original model was fit to noise (overfit).



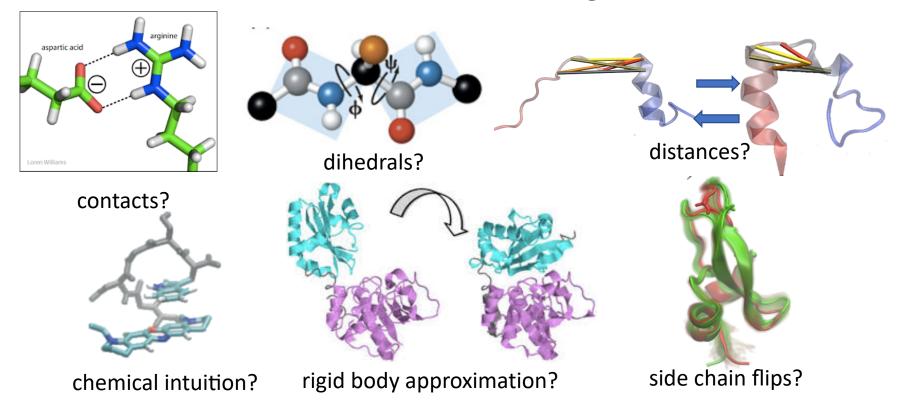
- Reporting a test-score that was computed from independent realizations is the gold standard.
- Independent realizations can be expensive to sample.
- Do the approximate k-fold (hold-out) cross-validation.
 - Split all data into training set and test sets.
 - Optimize the model parameters with the training set and test the parameters with test sets.
 - Repeat for k different divisions of the data.

 k-fold cross-validation can be tricky with highly autocorrelated time series data!

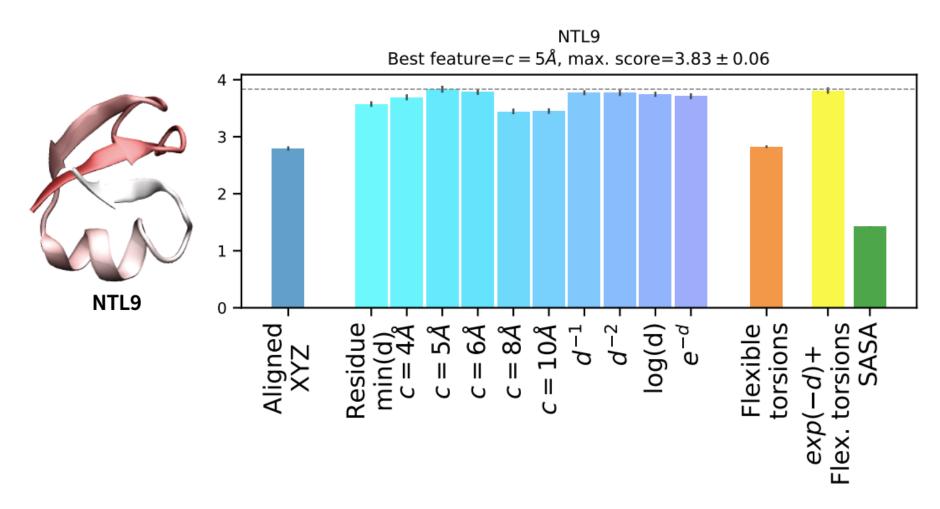
Applications

Application: feature selection

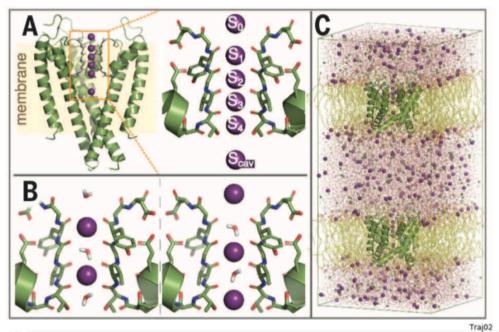
- variational principle: the higher the score the better
- Compare test scores for different selections of molecular features. Which selection gives best score?



Application: feature selection

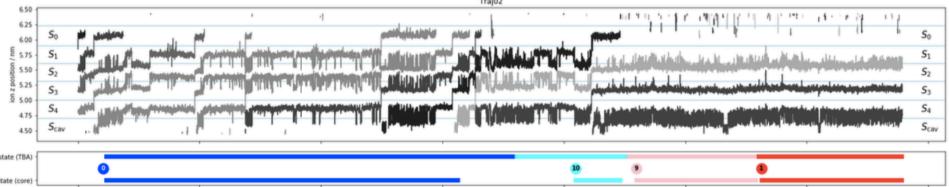


Application: ion channel nonequilibrium MD



Analysis of MD simulation data of the "controversial" direct-knock-on conduction mechanism in the KcsA potassium channel.

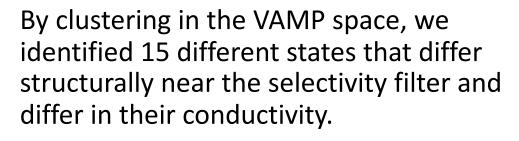
Ions a constantly inserted at one side of the membrane and deleted at the other side.

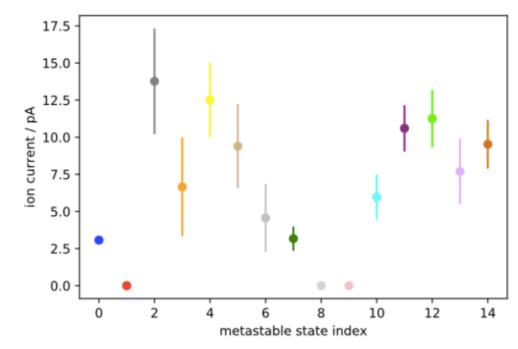


Paul et al, J. Chem. Phys. MMMK, 164120 (2019).

Fig1 and data: Köpfer et al., Science, 346, 352 (2014).

Application: ion channel nonequilibrium MD





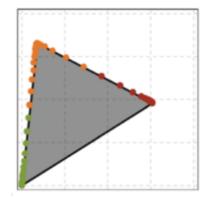
Summary and conclusion

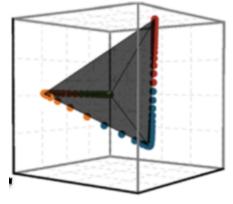
- VAC and VAMP are two variational principles that allow to approximate the true eigenfunctions of the dynamical system (VAC) or its restricted singular functions (VAMP) by using optimization.
- VAMP even works in non-equilibrium settings, if the dynamics is driven by external forces or if the sampling is so limited, that transitions in both the forward and backward directions are not available.
- VAMP can be used for feature selection and to model the slow reaction coordinates with enormously complicated functions (see talk tomorrow).

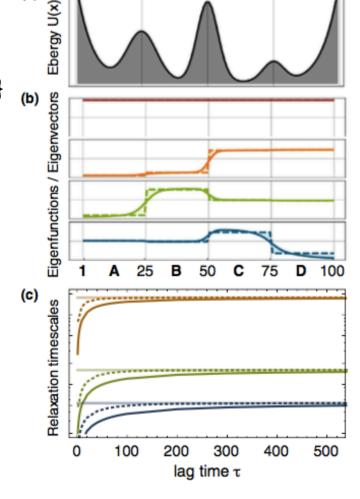
From order parameters to states to MSMs

- PCCA = Perron-cluster cluster analysis
- Motivating observation: the set of all MD data projected onto the dominant eigenvectors { v(x) | x ∈ data } form a simplex
- In 2-D simplex=triangle
 In 3-D simplex=tetrahedron

• • •







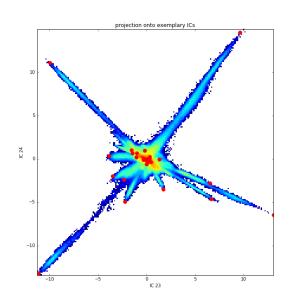
Deuflhard, Weber. *Linear Algebra Appl.*, 398 **161**, (2005). Weber, Galliat. Tech. Rep. **02-12**, *KZZ* (2002).

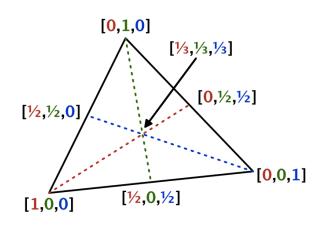
From order parameters to states to MSMs

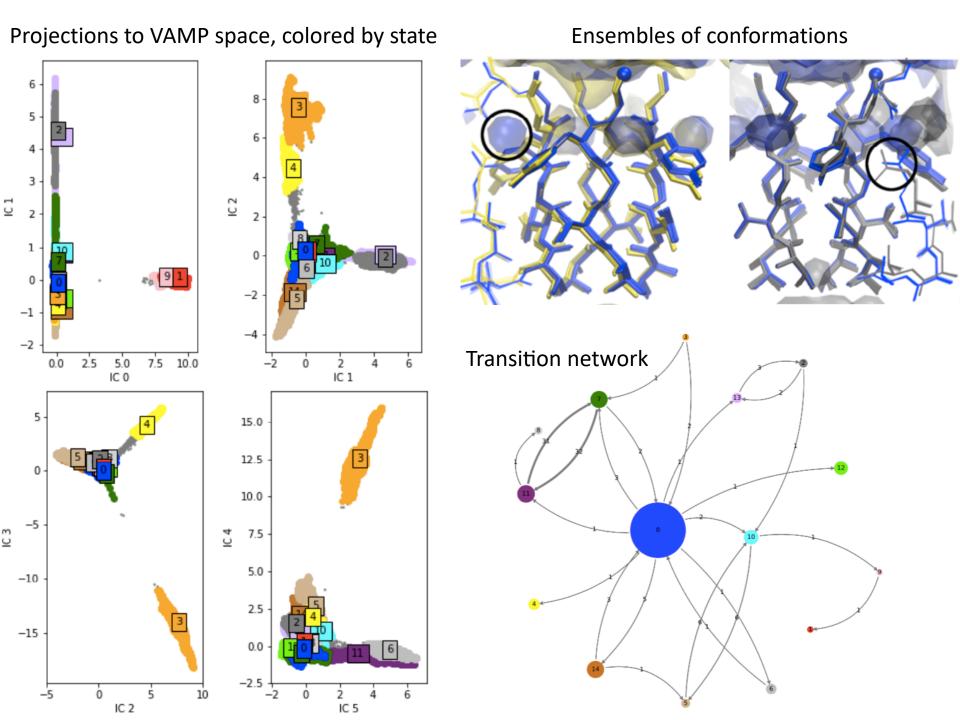
- I: PCCA only needs the eigenvectors
- II: TICA (and VAMP) provide eigenvectors
- I&II → We can do PCCA in TICA or VAMP space.

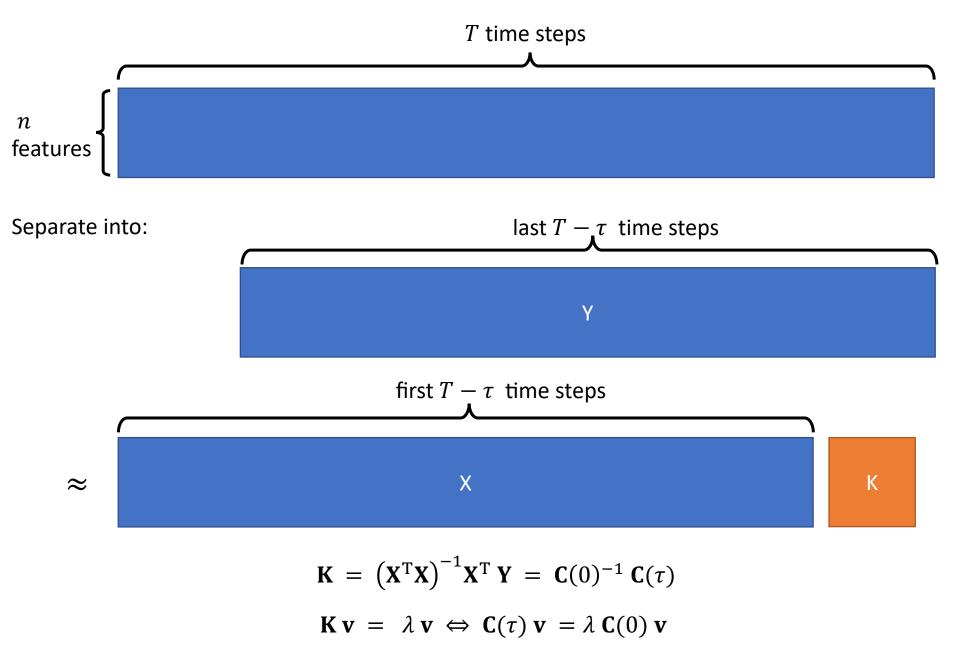
Steps of the PCCA algorithm:

- Find the N-1 most distant points (the vertices) in the N-dimensional eigenspace.
- 2. Compute barycentric coordinates of every MD frame with respect to the N-1 vertices.









Do a dimensionality reduction by keeping only the dominant eigenmodes.

VAMP is all about the eigendecomposition of the forward-backward transition matrix

$$T_{fb} := T_f T_b = C_{00}^{-1} C_{01} C_{11}^{-1} C_{01}^{\top}$$

= $(X^T X)^{-1} X^{\top} Y (Y^{\top} Y)^{-1} Y^{\top} X$

For the sake of notational simplicity, I have defined $C_{00} := X^T X$, $C_{11} := Y^T Y$, and $C_{01} := X^T Y$ without normalization.

Theorem: T_{fb} has a real-valued spectrum.

Proof: Introduce the co-ordinate transformed features $\tilde{X} := XC_{00}^{-\frac{1}{2}} = X(X^{\top}X)^{-\frac{1}{2}}$ and $\tilde{Y} := YC_{11}^{-\frac{1}{2}} = Y(Y^{\top}Y)^{-\frac{1}{2}}$. This choice leads to

$$ilde{C}_{00} := ilde{X}^T ilde{X} = \mathbb{I}$$
 $ilde{C}_{11} := ilde{Y}^T ilde{Y} = \mathbb{I}$
 $ilde{C}_{01} := ilde{X}^T ilde{Y} = C_{00}^{-\frac{1}{2}} C_{01} C_{11}^{-\frac{1}{2}}$

The new matrix \tilde{T}_{fb} in the new co-ordinates is

$$\tilde{T}_{fb} := \tilde{C}_{00}^{-1} \tilde{C}_{01} \tilde{C}_{11}^{-1} \tilde{C}_{10} = \tilde{C}_{01} \tilde{C}_{10} = \tilde{X}^\top \tilde{Y} \tilde{Y}^\top \tilde{X}$$

Obviously, this matrix is symmetric. Therefore \tilde{T}_{fb} has a real-valued spectrum.

 $\tilde{T}_{fb}v = \lambda v$ (1a) $\Leftrightarrow \tilde{C}_{01}\tilde{C}_{10}v = \lambda v$ (1b) $\Leftrightarrow C_{00}^{-\frac{1}{2}}C_{01}C_{11}^{-\frac{1}{2}}C_{11}^{-\frac{1}{2}}C_{01}^{\top}C_{00}^{-\frac{1}{2}}v = \lambda v$ (1c)

 $ilde{T}_{fb}v = C_{00}^{-rac{1}{2}}C_{01}C_{11}^{-1}C_{01}^{ op}C_{00}^{-rac{1}{2}}C_{00}^{rac{1}{2}}w$

 $\tilde{T}_{fb}v = \lambda C_{00}^{\frac{1}{2}}w$

To complete the proof, one has to show that T_{fb} has the same eigenvalues as T_{fb} . The eigenvectors

of \tilde{T}_{fb} can be easily found from the eigenvectors of T_{fb} by a linear transform. Let v be an eigenvector

Set $w := C_{00}^{-\frac{1}{2}}v$, then we find from the left hand side of 1a.

$$egin{align} &=C_{00}^{-rac{1}{2}}C_{01}C_{11}^{-1}C_{01}^ op w \ &=C_{00}^{rac{1}{2}}T_{fb}w \ \end{array}$$

of T_{fb} with the corresponding eigenvalue λ .

From the right hand side of 1a we find

Equating left and right sides, we get

 $C_{00}^{\frac{1}{2}}T_{fb}w = \lambda C_{00}^{\frac{1}{2}}w$ $T_{fb}w = \lambda w$

Therefore w is an eigenvector of T_{fb} with the unchanged eigenvalue λ . Since this hold for all eigenvectors of T_{fb} , this completes the proof.

Markov state models

MSM theory : propagator and generator

Langevin equation

$$\ddot{\mathbf{x}} = \mathbf{F}(\mathbf{x})/m - \gamma \dot{\mathbf{x}} + \sqrt{2k_B T \gamma/m} \, \boldsymbol{\eta}_i(t)$$

Fokker-Planck equation

$$\frac{\partial p(t, \boldsymbol{p}, \boldsymbol{x})}{\partial t} = \left(-\frac{\boldsymbol{p}}{m} \cdot \boldsymbol{\nabla}_{x} + \boldsymbol{\nabla}_{p} \cdot \left(\gamma \boldsymbol{p} - \boldsymbol{F}(\boldsymbol{x})\right) + \gamma k_{B} T m \Delta_{p}\right) p(t, \boldsymbol{p}, \boldsymbol{x})$$

Α

• Propagator (operator) define X = (p, x)

$$\mathcal{P}_{\tau}[p(t,.)](\mathbf{X}) = \exp[\tau A]p(t,.) = p(t+\tau,\mathbf{X})$$
$$= \int p(t,\mathbf{Y})p(\mathbf{Y} \to \mathbf{X};\tau)dY$$

• Transfer operator define $p(t, \mathbf{X}) = u(t, \mathbf{X}) p_B(\mathbf{X})$ $\mathcal{T}[u_t; \tau](\mathbf{X}) := \frac{1}{p_B(\mathbf{X})} \int u_t(\mathbf{Y}) p_B(\mathbf{Y}) p(\mathbf{Y} \to \mathbf{X}; \tau) \mathrm{d}\mathbf{Y}$

$c_1 = e^{-\gamma \delta t}$, $c_2 = \gamma^{-1}(1 - c_1)$, the equations of $c_3 = \sqrt{k_B T (1 - c_1^2)}$.

Stochastic Position Verlet (SPV)

$$x_{n+1/2} = x_n + \delta t M^{-1} p_n / 2;$$
 $p_{n+1} = c_1 p_n - c_2 \nabla U(x_{n+1/2}) + c_3 M^{1/2} R_{n+1};$ $x_{n+1} = x_{n+1/2} + \delta t M^{-1} p_{n+1/2};$

The Method of Brunger-Brooks-Karplus (1982) (BBK)

$$p_{n+1/2} = (1 - \delta t \gamma/2) p_n - \delta t \nabla U(x_n)/2 + \sqrt{\delta t k_B T \gamma} M^{1/2} R_n/2;$$

$$x_{n+1} = x_n + \delta t M^{-1} p_{n+1/2};$$

$$p_{n+1} = [p_{n+1/2} - \delta t \nabla U(x_{n+1})/2 + \sqrt{\delta t k_B T \gamma} M^{1/2} R_{n+1}/2]/(1 + \delta t \gamma/2);$$

Euler-Maruyama

$$x_{n+1}=x_n-\delta t M^{-1}\nabla U(x_n)+\sqrt{2k_BT_3\delta t}M^{-1/2}R_n;$$
 cited from: Leimkuhler, Matthews, Applied Mathematics Research eXpress, **2013**, 34 (2013)

MSM theory: transfer operator

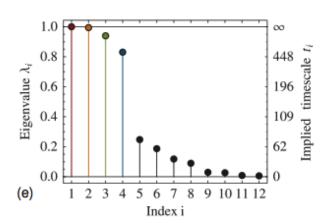
$$\mathcal{T}[u_t; \tau](\mathbf{X}) := \frac{1}{p_B(\mathbf{X})} \int u_t(\mathbf{Y}) p_B(\mathbf{Y}) p(\mathbf{Y} \to \mathbf{X}; \tau) dy$$
$$u_{t+\tau}(\mathbf{X}) = \mathcal{T}_{slow}[u_t; \tau](\mathbf{X}) + \mathcal{T}_{fast}[u_t; \tau](\mathbf{X})$$

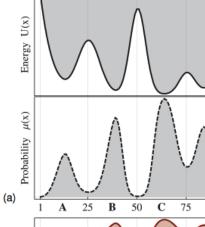
$$\mathcal{T}_{\mathrm{slow}}[u_t;\tau](\mathbf{X}) = \sum\nolimits_i \lambda_i(\tau) \psi_i(\mathbf{X}) \int \psi_i(\mathbf{Y}) p_B(\mathbf{Y}) u_t(\mathbf{Y}) \mathrm{d}y = \sum\nolimits_i \lambda_i(\tau) \psi_i(\mathbf{X}) \langle \psi_i, u_t \rangle_{p_B}$$

$$T_{ij} = \frac{\left\langle \chi_j, \mathcal{T}[\chi_i] \right\rangle_{p_B}}{\left\langle \chi_j, \chi_i \right\rangle_{p_B}} = \frac{\iint \chi_i(\mathbf{x}) p_B(\mathbf{Y}) p(\mathbf{Y} \to \mathbf{X}; \tau) \chi_j(\mathbf{X}) dx dy}{\int \chi_j(\mathbf{X}) \chi_i(\mathbf{X}) p_B(\mathbf{X}) dy} = \frac{\text{cov}(\chi_j, \chi_i; \tau)}{\text{cov}(\chi_i, \chi_i; 0)}$$

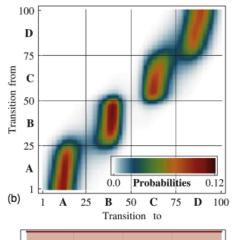
MSM: spectral properties

time scales:



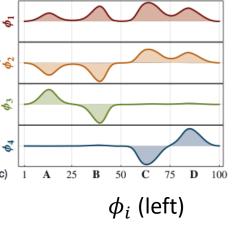


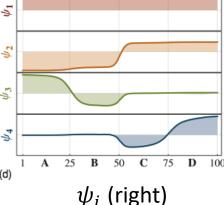
processes:



$$\mathcal{T}_{\text{slow}}[u_t; \tau](\mathbf{X}) = \sum_i \lambda_i(\tau) \psi_i(\mathbf{X}) \langle \psi_i, u_t \rangle_{p_B \leqslant 0}$$

$$\underbrace{\mathcal{T}_s \circ \cdots \circ \mathcal{T}_s}_{n \text{ times}} u_t = \sum_i \lambda_i^n(\tau) \psi_i \langle \psi_i, u_t \rangle_{p_B}$$





for MSM:

$$\boldsymbol{p}^T(n\tau) = \sum \lambda_i^n \boldsymbol{\phi}_i \left[\boldsymbol{\psi}_i \cdot \boldsymbol{p}(0) \right]$$

Prinz et al., J. Chem. Phys. **134**, 174105 (2011) Sarich et al., SIAM Multiscale Model. Simul. **8**, 1154 (2010).