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Recap: the spectral theory of MSMs

* A Markov state model consists of:
1. asetof states {s;}i=1.n
2. (conditional) transition probabilities between these states

Tij = P(S(t +T) =j | S(t) — l)

(0
A



Markov state models: estimation

* Markov model estimation starts with:
grouping of geometrically!!! or kineticallyl?! related conformations into

clusters or microstates

.
2
microstates

[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011) 3
[2] Pérez-Hernandez, Paul, et al., J. Chem. Phys. 139, 015102 (2013)




Markov state models: estimation

* We then assign every conformation in a MD trajectory to a microstate.

time t T 27 3t 41 5t 6T It

. S
trajectory ' ) ) sf )
microstate s 1 1 2 3 3 2 3

« We count transitions between microstates and tabulate them in a
count matrix C

e.9.C;1=1,Cp=1,Cp3 =2, ..

- We estimate the transition probabilities T;; from C.
* Naive estimator: T;; = C;;/ Xk Cix
«  Maximume-likelihood estimator [1]

[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011) 4
[2] Pérez-Hernandez, Paul, et al., J. Chem. Phys. 139, 015102 (2013)



The spectrum of a
reversible T matrix

* The large eigenvalues of the
transition matrix and their

corresponding eigenvectors encode

the information about the slow
molecular processes.

* Flat regions of the eigenvectors allow
to identify the metastable states.

10— — T T T T T
(o]
08 ¢ 1448
2 06 196
;S
5 04 109
8D
68}
0.2 TT 62
OOTTLL»H)
1 234567 89101112
Index i

Prinz et al., J. Chem. Phys. 134, 174105 (2011)

Implied timescale ¢,

Energy U(i)

100 -

Transition from
N
S

(h\

1/

/28

U3

Uy

0.0 |Probabilities 0.12

A 25 B 50 C 75 D 100
Transition to

ey
—

~

1

A 25 B 50 C 75 D 100



Both MSMs and TICA make use of the
same spectral methoo

The spectral method (working with eigenvalue and eigenvector) is not limited
to Markov state models.

e Estimation of MSMs

Cij(7)

T(7) = C

* |n matrix notation
T(z) = C(0)~C(7)

* Eigenvalue problem:
T(t)v=1Av © C(0)"1C(r)v = Ave C(r)v = AC(0)v

* The last equation is known as the TICA problem. All equations generalize to
the case where C(0) and C(7) are not count matrices, but correlation
matrices.

* Theindices i,j don’t longer refer to states but to features.

Schwantes, Pande, J. Chem. Theory Comput. 9 2000 (2013)
Pérez-Hernandez et al ,J. Chem. Phys., 139 015102 (2013)



VAC and VAMP



Variational approach to conformational dynamics VAC
(Rayleigh-Ritz for classical dynamics)

Any autocorrelation is bounded by the system-specific number 1, that is related to the
system-specific autocorrelation time £ by 1l=e /1

PTGt +) _ W, TY)y
PO E®) @

* The maximum is achieved if 1 is an eigenfunction of T.

<

acf(y; 1): =

Proof:
Expand ¥ in an (orthonormal) eigen-basis of T:

P(x) = 2;¢ di(x), (WY, )y = Xicf >0

(W, T)r = A, )y = E of A= E = > cf(h—1)<0
l l l
« Iflis max A; the largest of T's eigenvalues, the inequality holds.
l
* Result canonly be zeroif ¢; = 0 fori # jand 4; = max 4; = P(x) X ¢pyax(X)
l

* Remark: the varigtional approach generalizes to the optimization ofkmultiple
eigenfunctions. A is replaced by the sum of the eigenvalues R, = )./, 4;

Noé, Niske, SIAM Multiscale Model. Simul. 11, 635 (2013)



Interpretation of variational principle

good test function bad test function
1. Pick some test function Yest(X) |- +1 [+
and pick some test conformations| © . ° ® . . ¢
xi,in_it.al fjistrik?ute.:d aFcording to S . ® . . ®
equilibrium distribution ° e . ° e .
e o ® o
Q ([ _ ()
: - + +
2. Propagate X; jnjta1 With the o o/' "\O o j y S
the MD integrator. o PO,

Call result X; fina- j “~ , % j “ , 9%
4: T / 4: T U /
+

3. Correlate Yest(Xinital) With - ° ° + ° °
Xtest(xfinal)- ° S
Y L o A °
score= Zl\g:l(x(xl',inital)—_x).(x(xl',final)—)f) - o ® .. . ®
Yit1(x(Xiinita) —¥) - (x(Xiinita1)—X)
[ ) [ )
° — [




Gradient-based optimization of
function parameters

Parameters p of ¥iest(X; p) can be optimized with gradient-based
technigues. Make use of the gradient of the VAC or VAMP score, the
gradient of the test function and off-the-shelf optimizers such as ADAM or
BFGS.

0.0
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Reversible dynamics W

In equilibrium, every trajectory is as probable as its time-reversed
copy

P(s(t+ 1) =jands(t) =i) =P(s(t+ 1) =iands(t) =j)

P(st+1) =j1 s(t) = DPeq(s(t) =) =P(s(t + 1) =i | s(t) = HPeq(s(®) =)
In mathematician’s notation (el, Te]) (ej, Tei)
where (X, ¥}, = X; X;V;T;

T is a symmetric matrix w.r.t. to a non-standard scalar product.

T

T has real eigenvalues and eigenvectors (linear algebra I).

Prinz et al., J. Chem. Phys. 134, 174105 (2011)



The problem with nonreversible systems

Ry = Y%, 2; where A; are the true eigenvalues.

* For nonreversible dynamics (ei, Tej>n * (ej' Tei)ﬂ

* There might not even be a well-defined .

* Eigenvalues and eigenvectors will be complex.

* Variational principle doesn’t work. acf(y)) < A € C makes no
sense. One can’t order complex numbers on a line.

* Optimization of models not possible
* Feature selection not possible

* Is there any way to fix this? Can we maybe find some other
operator that is related to dynamics and that is symmetric?



A possible solution: VAMP

Variational approach to Markov processes

* Introduce the “backward” transition matrix
Ty, := C(N)"1C(—7) = C(N)"1 C"(7)
i.e. estimate MSM/TICA from time-reversed data, where

N

Cy(-1:= ) filx(t = D))
N

CiN):= ) FiG(O)f )

=t

* Introduce the forward-backward transition matrix Tg, := TTy, and Tye: = T, T

* Can show that T, and Tyf are symmetric without any reference to a stationary
vector (symmetry is built into the matrices).

* Eigenvalues and eigenvectors of Trp, and T ¢ are real.

» They fulfill a variational principle ||C™1/2(0)C(z)C(N)"Y/2|| < R

Wu, Noé, J. Nonlinear Sci. 30, 23 (2020) Klus, S. et al, J. Nonlinear Sci., 28,1 (2018)



Cross-validation

* The model parameters (in this example parameters of the line and
steepness of the transition) were optimized for a particular

realization of the dynamics.
1.0

e Didn’t we say that the
eigenfunctions and
eigenvalues were an
intrinsic property of the
molecular system?

* So the eigenfunctions
should be the same if we
repeat the analysis with a
second simulation of the
same system.
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Cross-validation

* The model parameters (in this example parameters of the line and
steepness of the transition) were optimized for a particular

realization of the dynamics.
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eigenfunctions and
eigenvalues were an
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* So the eigenfunctions
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Cross-validation

Ideally, we want to tell if the solution is robust at a single glance by

measuring the robustness with one number.

e The VAMP score or VAC
score (also called GRMQ?)
lends itself to this task.

* Keep all the trained model
parameters fixed (here the
line parameters and the
steepness of the transition),
plug in new data and
recompute the test
autocorrelation.

* The test autocorrelation
will be lower in general,
which means that the
original model was fit to
noise (overfit).

[1] McGibbon, Pande, J Chem Phys., 142 124105 (2015)
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Cross-validation

* Reporting a test-score that was computed from independent
realizations is the gold standard.

* Independent realizations can be expensive to sample.

* Do the approximate k-fold (hold-out) cross-validation.
* Split all data into training set and test sets.

* Optimize the model parameters with the training set and test the
parameters with test sets.

* Repeat for k different divisions of the data.

] Tonngda  ——»
[oraton |—-|ooc*)oolooooooooooooooo
fleaionz |+ 000000000 0/0000000000
fleaions | -0 000000000000000000

et |+ 00 000 000000000000000

e k-fold cross-validation can be tricky with highly autocorrelated time

series data!




Applications



Application: feature selection

e variational principle: the higher the score the better

 Compare test scores for different selections of
molecular features. Which selection gives best score?

— "q ﬂ%*&
o° Safe =T,

dlhedrals? dlstz,;mces? Y

contacts?

chemical intuition? rigid body approximation? side chain flips?



Application: feature selection
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Application: ion channel non-
equilibrium MD

Analysis of MD simulation data
of the "controversial” direct-
knock-on conduction
mechanism in the KcsA

membrane

B potassium channel.
" lons a constantly inserted at
v one side of the membrane and
deleted at the other side.
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Paul et al, J. Chem. Phys. MMMK, 164120 (2019).

Figmlmand data: Kép?efor etal., Scienc;:m346, 352 (2012??




Application: ion channel non-

equi

ion current / pA

librium MD

By clustering in the VAMP space, we
identified 15 different states that differ
structurally near the selectivity filter and
differ in their conductivity.

5.0 1
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metastable state index



Summary and conclusion

* VAC and VAMP are two variational principles that allow
to approximate the true eigenfunctions of the
dynamical system (VAC) or its restricted singular
functions (VAMP) by using optimization.

 VAMP even works in non-equilibrium settings, if the
dynamics is driven by external forces or if the sampling
is so limited, that transitions in both the forward and
backward directions are not available.

 VAMP can be used for feature selection and to model
the slow reaction coordinates with enormously
complicated functions (see talk tomorrow).



From order parameters to states to MSMs

* PCCA = Perron-cluster cluster analysis @)

* Motivating observation:
the set of all MD data projected onto the
dominant eigenvectors { v(x) | X € data}
form a simplex

* In 2-D simplex=triangle
In 3-D simplex=tetrahedron

Eigenfunctions / Eigenvectors Ebergy U(x)

(c)

Relaxation timescales

0 100 200 300 400 500

Deuflhard, Weber. Linear Algebra Appl., 398 161, (2005). lag time <

Weber, Galliat. Tech. Rep. 02-12, KZZ (2002).



From order parameters to states to MSMs

* |: PCCA only needs the eigenvectors
* |I: TICA (and VAMP) provide eigenvectors

e |&Il > We can do PCCA in TICA or VAMP
space.

Steps of the PCCA algorithm:

1. Find the N-1 most distant points (the (0,1.0]
vertices) in the N-dimensional '-

eigenspace.
. . D472,01 /.
2. Compute barycentric coordinates of

every MD frame with respect to the N-1
vertices. [1,0,0]

[

Weber, Galliat, Tech. Rep. 02-12, KZZ (2002).

12,0,%2

~N10,0,1]



Projections to VAMP space, colored by state
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T time steps
A

n
features

Separate into: last T 7 time steps

first T — T time steps

K = (X"X) 'XTY = ¢(0)- L C(7)

Q

Kv = Av e Cr)v =4C0) Vv

Do a dimensionality reduction by keeping only the dominant eigenmodes.



VAMP is all about the eigendecomposition of the forward-backward transition matrix

be = TfTb = 0&)100101—1103_1
=(XTX)"'XTyY(Y'Y)lYTX

For the sake of notational simplicity, I have defined Cyy := XTX, C1; := YTY, and Cp; := XTY
without normalization.

Theorem: 7%, has a real-valued spectrum.

Proof Introduce the co-ordinate transformed features X := X C&)% = X(XTX )‘% and Y =
YC'11 =Y (YY)~ 2. This choice leads to

éoo = XTX =1
Cii:=YTYy =1
~ o _1 _1
Oo1 := XTV = Oy Cor O
The new matrix be in the new co-ordinates is
be = éo—olé(nél_llélo = é()lél() = XT?Y/TX

Obviously, this matrix is symmetric. Therefore be has a real-valued spectrum.



To complete the proof, one has to show that T, has the same eigenvalues as Tf;,. The eigenvectors
of T4, can be easily found from the eigenvectors of T's; by a linear transform. Let v be an eigenvector

of be with the corresponding eigenvalue A.

be'u = \v (la)
<~ é()lélo’v = \v (].b)
& 0o Co1C7 O 2 O Cov = v (1c)

Set w = C’O_O%v, then we find from the left hand side of 1a.

. _1 3 1 1
Trpv = Cpyp” C'01(/1111(;'(;[_;LC'002 Coow
_1 B
= Cyy? Co1C1 Coyw
1

From the right hand side of 1a we find
. 1
Tpv = ACgw

Equating left and right sides, we get

1 1
Tryw = Aw

Therefore w is an eigenvector of T, with the unchanged eigenvalue A. Since this this hold for all
eigenvectors of 7'y, this completes the proof.



Markov state models



MSM theory : propagator and
generator

* Langevin equation

X =F(x)/m—yx+2kgTy/mn;(t)
* Fokker-Planck equation

p(t,p.X) [ P
ot (_n_l' Ve + V- (yp— F(0) + VkBTmAp)p(t,p,x)

* Propagator (operator) A
define X = (p, x)

P lp(t, )I(X) = expltAlp(t,.) = p(t + 7,X)
= Jp(t,Y)p(Y - X;7)dY

* Transfer operator
define p(¢t, X) = u(t, X)ps (X)

T lue; 1] (X): =

X u(Y)ps(Y)p(Y - X; 7)dY



o entine ~Fthe equations of

Ci =€ ; 6227—1(1_61)’

es = \/ksT(1 - &)
Stochastic Position Verlet (SPV)

Tnt1/2 = Tp + 0t M_lpn/Q;
Pnt1 = C1Pp — CQVU (Tpt1/2) + csM'?R,, 1
Tni1 = Tny1/z + 0t M ppy1/2;
The Method of Brunger-Brooks-Karplus (1982) (BBK)

Pny1/2 = (1 — 6t7/2)pn — 6t VU (2n)/2 + +/6tkgTYM'/* Ry, /2;

Tpy1 = Tp + Ot M_lpn+1/2;

Prt1 = [Pas1/2 — 6t VU (Tny1)/2 + / 6tkgTyYM? R, 1 /2] /(1 + ty/2);
Euler-Maruyama

Tpnt1 = Ty — 5tM_1VU(CEn) + 4/ 2kBCZ;§tM_l/2Rn,

cited from: Leimkuhler, Matthews, Applied Mathematics Research eXpress, 2013, 34 (2013)



MSM theory : transfer operator

1
ps(X)

Ut (X) = Tgrow e TIX) + Tpaselue; T](X)

Tlue; T](X): =

j 10, (V)ps (Vp(Y > X; )dy

Toowlt 7100 = > @i (X) j PP (D, Dy = > @YWy 1)y,

_— W T, [ t@psp(Y - X 0)x;(X)dxdy  cov(yy, xi 7)
T o), [ 20 x:Xps X)dy = cov(ri 11 0)

Prinz et al. J. Chem. Phys. 134, 174105 (2011)
Sarich et al SIAM Multiscale Model. Simul. 8, 1154 (2010).



MSM: spectral properties

time scales: Processes.
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Sarich et al., SIAM Multiscale Model. Simul. 8, 1154 (2010).



