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Recap: the spectral theory of MSMs

• A Markov state model consists of:
1. a set of states 𝑠! !"#,…&
2. (condi8onal) transi8on probabili8es between these states

𝑇!' = ℙ(𝑠 𝑡 + 𝜏 = 𝑗 ∣ 𝑠(𝑡) = 𝑖)

…



Markov state models: estimation

3[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013) 

• Markov model es-ma-on starts with:
grouping of geometrically[1] or kine-cally[2] related conforma-ons into 
clusters or microstates

microstates
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Markov state models: estimation

4[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013) 

t 2t 3t 6t4t 5t 7t-me 𝑡

trajectory

microstate 𝑠 1 1 2 23 3 3

• We then assign every conforma-on in a MD trajectory to a microstate.

• We count transitions between microstates and tabulate them in a 
count matrix 𝐂
e. g. 𝐶!! = 1, 𝐶!" = 1, 𝐶"# = 2, …

• We estimate the transition probabilities 𝑇$% from 𝐂.
• Naïve estimator: )𝑇$% = 𝐶$%/∑&𝐶$&
• Maximum-likelihood estimator [1]



The spectrum of a 
reversible T matrix
• The large eigenvalues of the 

transition matrix and their 
corresponding eigenvectors encode 
the information about the slow 
molecular processes.

• Flat regions of the eigenvectors allow 
to identify the metastable states.
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Prinz et al., J. Chem. Phys. 134, 174105  (2011)



Both MSMs and TICA make use of the 
same spectral method

The spectral method (working with eigenvalue and eigenvector) is not limited 
to Markov state models.
• Es;ma;on of MSMs

𝑇(𝜏) =
𝐶!"(𝜏)
𝐶!

• In matrix nota;on 
𝐓 𝜏 = 𝐂 0 #$𝐂(𝜏)

• Eigenvalue problem: 
𝐓 𝜏 𝐯 = 𝜆𝐯 ⇔ 𝐂 0 #$𝐂 𝜏 𝐯 = 𝜆𝐯⇔ 𝐂 𝜏 𝐯 = 𝜆𝐂(0)𝐯

• The last equa;on is known as the TICA problem. All equa;ons generalize to 
the case where 𝐂(0) and 𝐂 𝜏 are not count matrices, but correla;on 
matrices.

• The indices 𝑖, 𝑗 don’t longer refer to states but to features.

Schwantes, Pande, J. Chem. Theory Comput. 9 2000 (2013)
Pérez-Hernández et al ,J. Chem. Phys., 139 015102 (2013)



VAC and VAMP



Varia%onal approach to conforma%onal dynamics VAC
(Rayleigh-Ritz for classical dynamics)

Any autocorrelation is bounded by the system-specific number !𝜆, that is related to the 
system-specific autocorrelation time 𝑡̂ by !𝜆 = 𝑒!"/ $% .

acf 𝜓; 𝜏 : =
∑%&!"𝜓 𝑥 𝑡 𝜓 𝑥(𝑡 + 𝜏)
∑%&!"𝜓 𝑥 𝑡 𝜓 𝑥(𝑡)

=
𝜓, T𝜓 '

𝜓,𝜓 '
≤ !𝜆

• The maximum is achieved if 𝜓 is an eigenfunction of T.
Proof:
Expand 𝜓 in an (orthonormal) eigen-basis of T:

𝜓 𝑥 = ∑( 𝑐( 𝜙( 𝑥 , 𝜓,𝜓 ' = ∑( 𝑐() > 0

𝜓, T𝜓 ' − !𝜆 𝜓, 𝜓 ' =<
(
𝑐() 𝜆( −<

(
𝑐() !𝜆 =<

(
𝑐() 𝜆( − !𝜆 ≤ 0

• If !𝜆 is max
(
𝜆( the largest of T’s eigenvalues, the inequality holds.

• Result can only be zero if 𝑐( = 0 for 𝑖 ≠ 𝑗 and 𝜆* = max
(
𝜆( ⇒ 𝜓 𝑥 ∝ 𝜙+,- 𝑥

• Remark: the variational approach generalizes to the optimization of multiple 
eigenfunctions. !𝜆 is replaced by the sum of the eigenvalues 𝑅. = ∑(/0. 𝜆(

Noé, Nüske, SIAM Multiscale Model. Simul. 11, 635 (2013)



Interpretation of variational principle
1. Pick some test func0on 𝝌!"#! 𝐱

and pick some test conforma0ons
𝐱$,&'&!() distributed according to
equilibrium distribu0on 𝜋

2. Propagate 𝐱$,&'&!() with the 
the MD integrator.
Call result 𝐱$,*&'().

3. Correlate 𝝌!"#! 𝐱&'&!() with
𝝌!"#! 𝐱*&'() .

score=
∑!"#
$ 𝝌 𝐱!,&'&()* ./𝝌 ⋅ 𝝌 𝐱!,+&')* ./𝝌

∑!"#
$ 𝝌 𝐱!,&'&()* ./𝝌 ⋅ 𝝌 𝐱!,&'&()* ./𝝌

good test func0on bad test func0on

Ω



Gradient-based optimization of 
function parameters

Parameters 𝐩 of 𝝌'()' 𝐱; 𝐩 can be op-mized with gradient-based 
techniques. Make use of the gradient of the VAC or VAMP score, the 
gradient of the test func-on and off-the-shelf op-mizers such as ADAM or 
BFGS. 



Reversible dynamics

• In equilibrium, every trajectory is as probable as its time-reversed 
copy

ℙ 𝑠 𝑡 + 𝜏 = 𝑗 and 𝑠 𝑡 = 𝑖 = ℙ 𝑠 𝑡 + 𝜏 = 𝑖 and 𝑠 𝑡 = 𝑗

ℙ 𝑠 𝑡 + 𝜏 = 𝑗 ∣ 𝑠 𝑡 = 𝑖 ℙ12(𝑠 𝑡 = 𝑖) = ℙ 𝑠 𝑡 + 𝜏 = 𝑖 ∣ 𝑠 𝑡 = 𝑗 ℙ12(𝑠 𝑡 = 𝑗)

𝜋!𝑇!' = 𝜋'𝑇'!
• In mathematician’s notation 𝐞! , 𝐓𝐞' 3

= 𝐞' , 𝐓𝐞! 3
where 𝐱, 𝐲 3 = ∑! 𝑥!𝑦!𝜋!

• 𝐓 is a symmetric matrix w.r.t. to a non-standard scalar product.
• 𝐓 has real eigenvalues and eigenvectors (linear algebra I).

Prinz et al., J. Chem. Phys. 134, 174105  (2011)



The problem with nonreversible systems

• 𝑅& = ∑$*!& 𝜆$ where 𝜆! are the true eigenvalues.

• For nonreversible dynamics 𝐞! , 𝐓𝐞' 3
≠ 𝐞' , 𝐓𝐞! 3

• There might not even be a well-defined 𝝅.
• Eigenvalues and eigenvectors will be complex.

• Varia8onal principle doesn’t work. acf(𝜓) ≤ (𝜆 ∈ ℂmakes no 
sense. One can’t order complex numbers on a line.
• Op8miza8on of models not possible 
• Feature selec8on not possible

• Is there any way to fix this? Can we maybe find some other 
operator that is related to dynamics and that is symmetric?



A possible solu;on: VAMP
Varia%onal approach to Markov processes

• Introduce the “backward” transition matrix 
𝐓+ ∶= 𝐂 𝑁 ,!𝐂 −𝜏 = 𝐂 𝑁 ,! 𝐂- 𝜏

i.e. estimate MSM/TICA from time-reversed data, where 

𝐶$% −𝜏 :=8
.*/

0
𝑓$ 𝑥 𝑡 − 𝜏 𝑓% 𝑥(𝑡)

𝐶$% 𝑁 :=8
.*/

0
𝑓$ 𝑥(𝑡) 𝑓%(𝑥(𝑡))

• Introduce the forward-backward transition matrix 𝐓1+ ≔ 𝐓𝐓+ and 𝐓+2: = 𝐓3𝐓

• Can show that 𝐓1+ and 𝐓+2 are symmetric without any reference to a stationary 
vector (symmetry is built into the matrices).

• Eigenvalues and eigenvectors of 𝐓43 and 𝐓34 are real.

• They fulfill a variational principle 𝐂,!/" 0 𝐂 𝜏 𝐂 N ,!/" ≤ 𝑅

Wu, Noé, J. Nonlinear Sci. 30, 23 (2020) Klus, S. et al, J. Nonlinear Sci., 28, 1 (2018)



Cross-validation

• Didn’t we say that the 
eigenfunctions and 
eigenvalues were an 
intrinsic property of the 
molecular system?

• So the eigenfunctions 
should be the same if we 
repeat the analysis with a 
second simulation of the 
same system.  

• The model parameters (in this example parameters of the line and 
steepness of the transition) were optimized for a particular 
realization of the dynamics.



Cross-valida;on

• Didn’t we say that the 
eigenfunc-ons and 
eigenvalues were an 
intrinsic property of the 
molecular system?

• So the eigenfunc-ons 
should be the same if we 
repeat the analysis with a 
second simula-on of the 
same system.  

• The model parameters (in this example parameters of the line and 
steepness of the transi-on) were op-mized for a par-cular 
realiza-on of the dynamics.



Cross-validation
• Ideally, we want to tell if the solu-on is robust at a single glance by 

measuring the robustness with one number.
• The VAMP score or VAC 

score (also called GRMQ1) 
lends itself to this task.

• Keep all the trained model 
parameters fixed (here the 
line parameters and the 
steepness of the transition), 
plug in new data and 
recompute the test
autocorrelation.

• The test autocorrelation 
will be lower in general, 
which means that the 
original model was fit to 
noise (overfit).

[1] McGibbon, Pande, J Chem Phys., 142 124105 (2015)



Cross-validation
• Repor-ng a test-score that was computed from independent 

realiza-ons is the gold standard.

• Independent realiza-ons can be expensive to sample.
• Do the approximate k-fold (hold-out) cross-valida-on.

• Split all data into training set and test sets.
• Op0mize the model parameters with the training set and test the 

parameters with test sets.
• Repeat for k different divisions of the data.

• k-fold cross-valida-on can be tricky with highly autocorrelated -me 
series data!



Applica;ons



Application: feature selection

• varia%onal principle: the higher the score the be3er
• Compare test scores for different selec%ons of 

molecular features. Which selec%on gives best score?

contacts?

dihedrals?

rigid body approximation?

distances?

side chain flips?chemical intui0on?



Application: feature selection

Scherer et al J. Chem. Phys. 150, 194108 (2019)



Application: ion channel non-
equilibrium MD

Analysis of MD simulation data 
of the "controversial” direct-
knock-on conduction 
mechanism in the KcsA
potassium channel.
Ions a constantly inserted at 
one side of the membrane and 
deleted at the other side.

Fig1 and data: Köpfer et al., Science, 346, 352 (2014).Paul et al, J. Chem. Phys. MMMK, 164120 (2019).



Applica:on: ion channel non-
equilibrium MD

By clustering in the VAMP space, we 
identified 15 different states that differ 
structurally near the selectivity filter and 
differ in their conductivity.



Summary and conclusion

• VAC and VAMP are two variational principles that allow 
to approximate the true eigenfunctions of the 
dynamical system (VAC) or its restricted singular 
functions (VAMP) by using optimization.
• VAMP even works in non-equilibrium settings, if the 

dynamics is driven by external forces or if the sampling 
is so limited, that transitions in both the forward and 
backward directions are not available.
• VAMP can be used for feature selection and to model 

the slow reaction coordinates with enormously 
complicated functions (see talk tomorrow).



From order parameters to states to MSMs

• PCCA = Perron-cluster cluster analysis

• Motivating observation:
the set of all MD data projected onto the
dominant eigenvectors 𝐯 𝐱 𝐱 ∈ data
form a simplex

• In 2-D simplex=triangle
In 3-D simplex=tetrahedron 
... 

Deuflhard, Weber. Linear Algebra Appl., 398 161, (2005).
Weber, Galliat. Tech. Rep. 02-12, KZZ (2002).



From order parameters to states to MSMs

• I:  PCCA only needs the eigenvectors
• II: TICA (and VAMP) provide eigenvectors
• I&II → We can do PCCA in TICA or VAMP 

space. 

Steps of the PCCA algorithm:
1. Find the N-1 most distant points (the 

ver$ces) in the N-dimensional 
eigenspace.

2. Compute barycentric coordinates of 
every MD frame with respect to the N-1 
verQces.

Weber, Galliat, Tech. Rep. 02-12, KZZ (2002).



Transi0on network

Projections to VAMP space, colored by state Ensembles of conformations



K≈

𝐊 = 𝐗1𝐗 .2𝐗1 𝐘 = 𝐂 0 .2 𝐂(𝜏)

𝐊 𝐯 = 𝜆 𝐯 ⇔ 𝐂(𝜏) 𝐯 = 𝜆 𝐂(0) 𝐯

𝑇 time steps

𝑛
features

Y

last 𝑇 − 𝜏 time steps

X

first 𝑇 − 𝜏 0me steps

Separate into:

Do a dimensionality reduc0on by keeping only the dominant eigenmodes.







Markov state models
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MSM theory : propagator and 
generator
• Langevin equaGon

𝒙̈ = 𝑭 𝒙 /𝑚 − 𝛾𝒙̇ + 2𝑘3𝑇𝛾/𝑚 𝜼( 𝑡
• Fokker-Planck equaGon

𝜕𝑝(𝑡, 𝒑, 𝒙)
𝜕𝑡 = −

𝒑
𝑚 ⋅ 𝛁4 + 𝛁5 ⋅ 𝛾𝒑 − 𝑭 𝒙 + 𝛾𝑘3𝑇𝑚Δ5 𝑝(𝑡, 𝒑, 𝒙)

• Propagator (operator)
define 𝑿 = 𝒑, 𝒙

𝒫" 𝑝 𝑡, . (𝑿) = exp 𝜏𝐴 𝑝 𝑡, . = 𝑝(𝑡 + 𝜏, 𝑿)

= [𝑝 𝑡, 𝐘 𝑝 𝐘 → 𝐗; 𝜏 d𝑌

• Transfer operator
define 𝑝 𝑡, 𝑿 = 𝑢(𝑡, 𝑿)𝑝3(𝑿)

𝒯 𝑢%; 𝜏 (𝐗): =
1

𝑝3(𝐗)
[𝑢% 𝐘 𝑝3 𝐘 𝑝 𝐘 → 𝐗; 𝜏 d𝑌

𝐴
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Integration of the equations of 
motion

cited from: Leimkuhler, Matthews, Applied Mathematics Research eXpress, 2013, 34 (2013)
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MSM theory : transfer operator

𝒯 𝑢%; 𝜏 (𝐗): =
1

𝑝3(𝐗)
[𝑢% 𝐘 𝑝3 𝐘 𝑝 𝐘 → 𝐗; 𝜏 d𝑦

𝑢%6" 𝐗 = 𝒯789: 𝑢%; 𝜏 (𝐗) + 𝒯;,7< 𝑢%; 𝜏 (𝐗)

𝒯789: 𝑢%; 𝜏 𝐗 =<
(
𝜆( 𝜏 𝜓((𝐗)[𝜓( 𝐘 𝑝3 𝐘 𝑢% 𝐘 d𝑦 =<

(
𝜆( 𝜏 𝜓( 𝐗 𝜓( , 𝑢% 5!

𝑇(* =
𝜒* , 𝒯[𝜒(] 5!
𝜒* , 𝜒( 5!

=
∬𝜒( 𝐱 𝑝3 𝒀 𝑝 𝐘 → 𝐗; 𝜏 𝜒* 𝐗 d𝑥d𝑦

∫𝜒* 𝐗 𝜒( 𝐗 𝑝3 𝐗 d𝑦
=
cov(𝜒* , 𝜒(; 𝜏)
cov(𝜒( , 𝜒(; 0)

Prinz et al. J. Chem. Phys. 134, 174105  (2011)
Sarich et al SIAM Multiscale Model. Simul. 8, 1154 (2010).
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time scales: processes:

Prinz et al., J. Chem. Phys. 134, 174105  (2011)
Sarich et al., SIAM Multiscale Model. Simul. 8, 1154 (2010).

for MSM: 

𝒑3 𝑛𝜏 =2
$

𝜆$4𝝓$ [𝝍$ ⋅ 𝒑 0 ]

𝜙$ (left) 𝜓$ (right)

MSM: spectral properties

𝒯#)56 𝑢7; 𝜏 𝐗 =2
$
𝜆$ 𝜏 𝜓$ 𝐗 𝜓$ , 𝑢7 8,

𝒯9 ∘ ⋯ ∘ 𝒯9 𝑢7
4 !&:"#

=2
$
𝜆$4 𝜏 𝜓$ 𝜓$ , 𝑢7 8,
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