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Main challenges in molecular dynamics simulation
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rare event

Molecular dynamics simulation of biomolecules is difficult because:

1. molecular systems are high-dimensional

2. their dynamics are stochastic + biologically interesting events are rare



MD integration time step (4fs) 
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Reachable time scales in MD simulation
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Reachable time scales in MD simulation



Outline

• Importance sampling
• Simulation types
– Boltzmann reweighting
– Umbrella sampling 
– multi-temperature simulation
– accelerated MD

• Analysis methods
– Weighted Histogram Analysis method + its problems
– Multi Ensemble Markov Models and discrete TRAM



Importance sampling[1] (Boltzmann reweighting)

𝑈(")

𝑥

[1] Kahn, Marshall, J. Oper. Res. Soc. Am. 1, 263 (1953) (or earlier by others)

• is a method for systems that are “hard” to simulate.
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𝑈(")

𝑥

physical

biased

• is a method for systems that are “hard” to simulate.
• introduces a biased energy model 𝑈(!) that is “easier” to simulate.

[1] Kahn, Marshall, J. Oper. Res. Soc. Am. 1, 263 (1953) (or earlier by others)

𝑈($)
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Importance sampling[1] (Boltzmann reweighting)



𝑈(")

𝑥

physical

biased

• is a method for systems that are “hard” to simulate.
• introduces a biased energy model 𝑈(!) that is “easier” to simulate.
• allows to compute observables of the equilibrium distribution that belongs to 

the physical model 𝑈(') using Boltzmann reweighting.

[1] Kahn, Marshall, J. Oper. Res. Soc. Am. 1, 263 (1953) (or earlier by others)

← simulate using this model…

← … but calculate observables for this model.  

𝑈($)
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Importance sampling[1] (Boltzmann reweighting)



𝑈(")

where 𝒙% ∼ 𝑝(") 𝒙

where 𝒙% ∼ 𝑝($) 𝒙𝑥

physical

biased

• is a method for systems that are “hard” to simulate.
• introduces a biased energy model 𝑈(!) that is “easier” to simulate.
• allows to compute observables of the equilibrium distribution that belongs to 

the physical model 𝑈(') using Boltzmann reweighting.
• works for estimating equilibrium expectations, but not for rates*.

𝑈($)
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Importance sampling[1] (Boltzmann reweighting)

• 𝑈 " 𝑥 = the unbiased or the physical energy
• 𝑈 $ 𝑥 = the biased energy  
• 𝑈&'()

$ 𝑥 = 𝑈 $ 𝑥 − 𝑈 " 𝑥 = the bias energy

𝑂 (") = )𝑂 𝑥 𝑒*+, ! - .+/(!)d𝑥 ≈
1
𝑁/%

0
𝑂(𝑥%)

𝑂 (") = )𝑂 𝑥 𝑒*+, $ - .+/($) 𝑒
*+, ! - .+/(!)

𝑒*+, $ - .+/($)
d𝑥

≈ $
0/%

0
𝑂(𝑥%)𝑒*+,

! - .+, $ (-).+/ ! *+/ $



• 𝑈 " 𝑥 = the unbiased or the physical energy
• 𝑈 $ 𝑥 = the biased energy  

• 𝑈&'()
$ 𝑥 = 𝑈 $ 𝑥 − 𝑈 " 𝑥 = the bias energy

What is the optimal bias?

For a low-dimensional system, it would be efficient to 
sample from a flat energy landscape: 

𝑈($) 𝑥 = 0

Allows good sampling of the minima and the barrier.

⇒ 𝑈&'()
($) (𝑥) = −𝑈(")(𝑥)

Boltzmann reweighting / importance sampling



Importance sampling in high dimensions

• Sampling uniformly is not possible in high dimensional space like the 
conformational space. 



Importance sampling in high dimensions

• Introduce an “order parameter” that connects the relevant minima in the 
energy landscape. 

order parameter or reaction coordinate



Importance sampling in high dimensions

𝑃 𝜉∗ ∝ )𝛿 𝜉(𝑥) − 𝜉∗ 𝑒*+,(-)d𝑥

• Sample uniformly along the order parameter.

order parameter or reaction coordinate

−
𝑘 !
𝑇
lo
g𝑃

𝜉∗



Importance sampling in high dimensions

• The ideal bias energy would be (#𝑇 log𝑃 𝜉
(minus the potential of mean force)

• Problem: computing 𝑃 𝜉 requires sampling from the unbiased distribution!

order parameter or reaction coordinate

𝑃 𝜉∗ ∝ )𝛿 𝜉(𝑥) − 𝜉∗ 𝑒*+,(-)d𝑥

−
𝑘 !
𝑇
lo
g𝑃

𝜉∗



Umbrella sampling

biased potentials bias potentials probability distributions

𝑈$ 𝑥 + 𝑈%&'(
(*) (𝑥) 𝑈%&'(

(*) (𝑥) 𝑃%&'(,- 𝑥 ∝ 𝑒./[1 ! 2 31"#$%
(') (2)]

• The ideal bias energy would be (#𝑇 log𝑃 𝜉
• Problem: computing 𝑃 𝜉 requires sampling from the unbiased distribution!
• Instead of simulating with the ideal bias  (#) log 𝑃 𝜉 ,  we select a sub-

optimal but flexible form of the bias.  → umbrella sampling
• Use 𝐾 different bias potentials that jointly allow uniform sampling.



Multi temperature simulation

biased potentials “bias potentials” probability distributions
/(')

/(!)𝑈
($) 𝑥 /(')./(!)

/(!) 𝑈($)(𝑥) 𝑃%&'(,- 𝑥 ∝ 𝑒./(')1(!) 2

• Multi-temperature simulations is another way of approximately producing a flat 
biased distribution.

• Idea has to taken with a grain of salt: order parameter and the minima that it 
connects are assumed to stay the same for all temperatures. 



A bit of notation…

• Introduce “dimension-less bias“ 

𝑏 8 𝑥 ≡ 𝛽 8 𝑈 8 𝑥 − 𝛽 9 𝑈 9 𝑥

by picking the ensemble 0 as the reference ensemble.
• Assume that the energies in the reference ensemble are 

shifted, such that its Boltzmann distribution is normalized 
𝛽(9)𝐹(9) = 0.

• Introduce the log partition function 𝑓(8) = 𝛽(8)𝐹(8)
Then the reweighting factors become

𝑒:; ! < ! = >; " < " = >; ! ? ! :; " ? " = 𝑒:@ ! >A(!)



Weighted Histogram Analysis Method

Discretize  the order parameter into a number of bins.
For every individual bin, we can do Boltzmann reweighting between ensembles.

𝜋2
(3) = %& '()[+,

- (&)]

/(-)
𝑍(3) = ∑2 𝜋2 exp[−𝑏

3 (𝑖)]

where we have assumed that bias energy is constant over each bin.

But how to we find 𝜋2?

Optimize likelihood:    𝐿4567(𝜋2
(3)) = ∏3∏2 𝜋2

(3) 0&
(-)

(see next slide)

WHAM

p

𝑥

The MD simulation gives us realizations or samples. How do we find probabilities? 

𝑖



Maximum likelihood estimation

Start from basic definition of conditional probability:

𝑃𝑟 data,model = 𝑃𝑟 data model ⋅ 𝑃𝑟 model

= 𝑃𝑟 model ∣ data ⋅ 𝑃𝑟(data)

𝑃𝑟 model data = 𝑃𝑟(data ∣ model) NO(PQRST)
NO(RUVU)

Because we don‘t know better: 𝑃𝑟 model = 𝑐𝑜𝑛𝑠𝑡
Compute:

max
PQRSTW

𝑃𝑟(data ∣ model)

posterior priorlikelihood L

max
PQRSTW



Likelihood for WHAM

𝐿(𝜋1, … , 𝜋2) =(
3

(
4

𝜋4 exp[−𝑏
3 (𝑖)]

∑5 𝜋5 exp[−𝑏
3 (𝑗)]

68
(9)

with the data 𝑁4
(3), exp[−𝑏 3 (𝑖)] and the model parameters 𝜋4.

Note: can make bins so small s. t. they contain only one 𝑥. 𝑖 ⟶ 𝑥.

Likelihood: 𝐿*+,- = ∏(∏. 𝜋.
(() $6

(7)

Example: set of 5 samples 1,2,3,3,2 (index of the bin for 5 samples) 
form simulation with umbrella 1

𝑃𝑟 1,2,3,3,2 = 𝜋!
! 𝜋"

! 𝜋#
! 𝜋#

! 𝜋"
! = 𝜋!

! !
𝜋"
! "

𝜋#
! "

All simulations and all samples are statistically independent.
Inserting the Boltzmann reweighting relation into 𝐿*+,- gives:



𝐿 =A
8

A
X

𝜋X exp[−𝑏
8 (𝑖)]

∑Y 𝜋Y exp[−𝑏
8 (𝑗)]

Z%
(!)

stationary probabilities 
(thermodynamics)

probabilistic model:

optimize model parameters 𝜋

Bin definitions 
and counts
𝑁2
(3)

WHAM workflow

bias potential 
values
𝑏 3 (𝑥)



Computing the bias energies

A closer look at the anatomy of 𝑏 ( (𝑥):

for every conformation

value of the bias energy 
of a conformation
evaluated in all ensembles
not only in the ensemble in which 𝑥 was generated

𝑏!
" (𝑥)

in general multiple simulation runs
(independent trajectories)

𝑏!
" (𝑥)

!

• This is 3-D data structure.
• Since the trajectories might have different lengths this is a jagged/ragged array and 

not a tensor. In PyEmma it’s a list of 2-D numpy arrays:
btrajs = [

np.array([[0.0, ...], [1.2, ...]]),
np.array([[0.0, ...], [4.2, ...]]),
...

]



Computing the bias energies

Example: Umbrella sampling
• All temperatures are the same

𝛽(3) = 𝛽 = 1/𝑘:𝑇 = 1/(0.00198 kcal/mol K ⋅ 300 𝐾)
• The bias is a quadratic function of an order parameter 𝜉 𝑥

𝑈 3 𝑥 =
1
2 𝜅

3 𝜉(𝑥) − 𝜉;<=><?
(3) @

with the spring constants 𝜅 3 and rest positions 𝜉;<=><?
(3) . 



Computing the bias energies

Working with saved (pre-computed) order parameters:



NOT computing the bias energies

order parameter
trajectories



• Pyemma example



Combining free energy calculations with MSMs:
Multi Ensemble Markov Models



Problems of Umbrella sampling: slow 
orthogonal degrees of freedom

Remember the WHAM likelihood:

𝐿4567 =n
3

n
2

𝜋2
(3) 0&

(-)

Second product means that samples are drawn from the equilibrium distribution 𝜋2
(3).

p(x)



p(x)

Problems of Umbrella sampling: slow 
orthogonal degrees of freedom

In the energy landscape above, motion along 𝑥A can be highly autocorrelated. 
So the assumption of independent samples may be wrong. → systematic error

Since we know that MSMs can be used to compute free energies reliably form 
correlated data,  can’t we just somehow build an MSM along  𝑥A?



MEMM
Multi Ensemble Markov Model 𝑇./

(

index k = number of the Umbrella potential
= number of temperature in multi-temperature

simulations
indices i,j = number of the discrete Markov state, 

i.e. bin number along 𝑥A
or any other sensible state discretization

𝑇$$
($) ⋯ 𝑇$%

($)

⋮ ⋱ ⋮
𝑇%$
($) ⋯ 𝑇$$

($)

𝑇$$
(@) ⋯ 𝑇$%

(@)

⋮ ⋱ ⋮
𝑇%$
(@) ⋯ 𝑇$$

(@)

𝑇$$
(B) ⋯ 𝑇$%

(B)

⋮ ⋱ ⋮
𝑇%$
(B) ⋯ 𝑇$$

(B)

Ensemble 1

Ensemble 2 π 1
(2)

π 1
(1)

2
(2)

2
(1)

π

πT12

T12

T21

T21
(1)

(1)

(2)

(2)

⋮

2 × 2 example:



• How the individual MSMs in the MEMM are coupled together?  
- Part 1 of the answer: 
Boltzmann reweighting of stationary distributions (like in WHAM)

𝜋.
(() = 86 9:;[<=

7 (6)]

>(7)
𝑍(() = ∑. 𝜋. exp[−𝑏

( (𝑖)]

- Part 2 of the answer:
𝜋.
(() is the stationary distribution of 𝑇./

(().
We even require a stronger condition that 
𝐓(() is reversible with respect to 𝛑(().

𝜋.
(()𝑇./

(() = 𝜋/
(()𝑇/.

(()

reversibility = detailed balance

MEMM
Multi Ensemble Markov Model 𝑇./

(

π 1
(2)

π 1
(1)

2
(2)

2
(1)

π

πT12

T12

T21

T21
(1)

(1)

(2)

(2)

Pr(𝑠(𝑡 + 𝜏) = 𝑖 𝐚𝐧𝐝 𝑠(𝑡) = 𝑗) = Pr(𝑠(𝑡 + 𝜏) = 𝑗 𝐚𝐧𝐝 𝑠(𝑡) = 𝑖)



(d)TRAM
(discrete) Transition-based Reweighting Analysis Method

• How is the MEMM estimated?

• Reminder - estimation of MEMs:

Likelihood for an MSM: 𝐿-0- = ∏.∏/ 𝑇./
16?

Consider example trajectory (1 → 2 → 2 → 1 → 2)

Pr 1 → 2 → 2 → 1 → 2 = Pr 1 ⋅ 𝑇!" ⋅ 𝑇"" ⋅ 𝑇"! ⋅ 𝑇!"
∝ 𝑇!! ' 𝑇!" " 𝑇"" ! 𝑇"! !

= 𝑇!! 1@@ 𝑇!" 1@A 𝑇"" 1AA 𝑇"! 1A@

=F
.2!

"
F

/2!

"
𝑇./

16?



(d)TRAM
(discrete) Transition-based Reweighting Analysis Method

• How is the MEMM estimated?

Basically an MEMM is just a collection of MSMs.

𝐿-3--(𝐓
! , … , 𝐓 4 ) =F

(

𝐿-0-(𝐓
( )

Inserting gives:

𝐿-3-- =F
(

F
.

F
/

𝑇./
( 16?

(7)

Maximize 𝐿-3-- under the constraints:

• 𝜋.
(()𝑇./

(() = 𝜋/
(()𝑇/.

(() • ∑/ 𝑇./
(() = 1

• 𝜋2
(3) =

C& <DE[*G
- (2)]

∑0 C0 <DE[*G
- (J)]

• 𝑇./
(() ≥ 0



(d)TRAM: workflow

𝐿 =A
8

A
X

A
Y

𝑇XY
8 |%&

(!)

𝜋X exp[−𝑏
8 (𝑖)] 𝑇XY

(8) = 𝜋Y exp[−𝑏
8 (𝑗)] 𝑇YX

(8)

stationary probabilities 
(thermodynamics)

𝜋2

kinetic probabilities (rates)
𝑇2J
(3)

probabilistic model:

Optimize  model parameters 𝜋 and 𝑇.

Markov states 
and transition 

counts 𝑐2J
(3)

bias potential 
values
𝑏 3 (𝑥)



Advantages of using (d)TRAM

• There is no initial equilibration transient where the 
simulation have to relax to global equilibrium.

• Smaller de-correlation time (simulation time until one 
gets a new uncorrelated frame). More efficient usage 
of the data.

• Better estimation of free 
energies along the unbiased 
orthogonal degrees of freedom.
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1. Define the Markov states.

• Kinetics and free energies are inseparably related in reversible systems.
• Make use of detailed balance relation exp −𝛽𝑓. 𝑇./ = exp −𝛽𝑓/ 𝑇/.



38

1. Define the Markov states.
2. Biased simulation provides 

information about the Δ𝐹‘s
between the states.

• Kinetics and free energies are inseparably related in reversible systems.
• Make use of detailed balance relation exp −𝛽𝑓. 𝑇./ = exp −𝛽𝑓/ 𝑇/.
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1. Define the Markov states.
2. Biased simulation provides 

information about the Δ𝐹‘s
between the states

3. Unbiased simulations provide 
information about the transition 
probabilities in one direction.

• Kinetics and free energies are inseparably related in reversible systems.
• Make use of detailed balance relation exp −𝛽𝑓. 𝑇./ = exp −𝛽𝑓/ 𝑇/.
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1. Define the Markov states.
2. Biased simulation provides 

information about the Δ𝐹‘s
between the states.

3. Unbiased simulations provide 
information about the transition 
probabilities in one direction.

4. TRAM yields the missing 
probabilities, completing the 
model. 

• Kinetics and free energies are inseparably related in reversible systems.
• Make use of detailed balance relation exp −𝛽𝑓. 𝑇./ = exp −𝛽𝑓/ 𝑇/.



Real-world applications



PMI-Mdm2: medically relevant; complex mechanism

• 25-109Mdm2: amino acids 25-109 of Mdm2 

• Mdm2 is a natural protein.
• Mdm2 is overexpressed 

(produced in increased quantity) 
in certain cancer types. This 
leads to pathogenic interaction 
of Mdm2 with other proteins 

• PMI: peptide (12 amino acids) was developed to 
stop this pathogenic interaction by blocking 
Mdm2’s binding site.

• PMI is unfolded when unbound [2]
but folded when bound to Mdm2. [1] 
→ We expect to see a process of coupled folding 
and binding.

[1] Pazgier et al., Proc. Natl. Acad. Sci. 106, 4665 (2009)
[2] Paul et al., Nat. Commun. 8, 1095 (2017)

image: X-ray crystal structure from [1]
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PMI-Mmd2: analysis of the physical data only

• Not a single full unbinding event is contained in the physical data.
• There are many long-lived states, that appear stable on time scales of 1 to 10 µs. 

• The short (1µs) simulations do not escape these long-lived states.
• → No exit probabilities and not stationary weights (𝝅) can be determined for 

these states.

• → No useful MSM could be estimated.

𝑇75=?
𝜋7=?

𝑇85=?
𝜋8=?

state 8 state 6
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PMI-Mmd2: analysis of all simulation data with TRAM

experimental value [3]
26.8 s [24.7 s,	34.1 s]

We determine the dissociation constant 𝐾K = P <L L <L/ PL <L from

• our simulations using TRAM [3]: 0.34 nM [0.22 nM,	0.44 nM]
• experiment [3]: 3.02 nM [2.41 nM,	3.63 nM]
Agrees within the expected “force field” inaccuracies (factor of 10) [1,2].

We determine the residence time 𝒌𝐨𝐟𝐟*𝟏 : 

[1] Best et al., J. Chem. Theory Comput. 10, 5113 (2014) errors = 95% confidence intervals
[2] Rauscher et al.,  J. Chem. Theory Comput. 11, 5513 (2014)
[3] Paul ... Abualrous et al., Nat. Commun, 8, 1095 (2017)

Inclusion of biased data drastically reduces the statistical errors.

44

simulation result [3]:
0.88 s [0.48 s,	1.33 s]



Application 2: Trypsin-Benzamidine



PMI-Mdm2: binding mechanism



Further reading

• Wu, Mey, Rosta, Noé:  “Statistically optimal 
analysis of state-discretized trajectory data from 
multiple thermodynamic states”,  J. Chem. Phys. 
141, 214106 (2014)

• Wu, Paul, Wehmeyer, Noé:  “Multiensemble
Markov models of molecular thermodynamics 
and kinetics”, PNAS 113, E3221–E3230 (2016)

• Paul et al. “Protein-peptide association kinetics 
beyond the seconds timescale from atomistic 
simulations” Nat. Commun., 8, 1095 (2017)



Bin-less estimators



MBAR

𝐿'()* =#
+

#
,

𝜋,
(+) -&

(-)

• Width of the bin is never used. 
Can put every sample in its own bin.
Then 𝑁,

(+) is either 1 or 0. 

Ignore all factors of the form 𝜋,
(+) .

= 1.

𝐿*/)0 =#
+

#
1

𝜇 + (𝑥)

• 𝜇 + 𝑥 = 2+, - (1)

3(-)
𝜇 456 𝑥

instead of 𝜋,
(+) = 2+,

- (&)

3(-)
𝜋,
(456)

Multistate Bennet acceptance ratio

• WHAM: binning -> reweighting
• MBAR: reweighting -> optional binning  (for computing probabilities)

𝜇(3)(𝑥)

𝑥

𝑥

𝜇(3)(𝑥)

𝑖

𝜋2
3 (≠ 𝑁2

3 )



Bin-less TRAM

• How to combine the benefits an MSM with 
bin-less reweighting?

• For WHAM->MBAR we let go the bin-size to 
zero.

• For dTRAM->TRAM this doesn‘t work. MSM 
with a high number of states are hard to 
handle.

• Introduce the local equilibrium distribution.



The local equilibrium distribution

𝜇 ( (𝑥/) : contribution of the sample 𝑥/ to the Boltzmann 
distribution of  ensemble 𝑘.

𝜇𝒊
( (𝑥/) : contribution of the sample 𝑥/ to the Boltzmann 

distribution of  ensemble 𝑘, given that the sample falls 
into Markov state 𝑠..

ℙ 𝑥 state 𝑖 and ens. 𝑘 =
ℙ(𝑥 and 𝑥 ∈ state 𝑖 and ens. 𝑘)

ℙ(state 𝑖 and ens. 𝑘)

⟹ 𝜇2
3 𝑥J =

𝜇 3 𝑥J 𝜒2 𝑥J
𝑧2
3

=
𝜇(𝑥J) exp −𝑏 3 𝑥J 𝜒2(𝑥J)

𝑧2
(3)

𝑥

𝑥

𝑥

𝜇$
($)(𝑥) 𝜇@

($)(𝑥)

𝜇($)(𝑥)

𝜇 $ (𝑥)𝜒$(𝑥) 𝜇 $ (𝑥)𝜒@(𝑥)



Formulation of the TRAM model

𝑠678( 𝑠6( 𝑠698(

𝑥678( 𝑥6( 𝑥698(

Discrete 
state

Continuous 
configuration

Simulation at ensemble 𝑘



Formulation of the TRAM model

𝑠678( 𝑠6( 𝑠698(

𝑥678( 𝑥6( 𝑥698(

Discrete 
state

Continuous 
configuration

Simulation at ensemble 𝑘

ℙ 𝑠�>�
(8) = 𝑗 𝑠�

(8) = 𝑖 = 𝑇XY
(8) (modeling by MSM)



Formulation of the TRAM model

ℙ 𝑥�
(8) 𝑠�

(8) = 𝑖 = 𝜇X
(8) 𝑥�

(output  according to local equilibrium)

𝑠678( 𝑠6( 𝑠698(

𝑥678( 𝑥6( 𝑥698(

Discrete 
state

Continuous 
configuration

Simulation at ensemble 𝑘 𝜇$
(3)(𝑥) 𝜇@

(3)(𝑥)



Model for one (whole) trajectory:

𝐿(traj from ensemble 𝑘) = 𝜇:(')
(() ⋅ 𝑇: ' : !

( ⋅ 𝜇:(!)
(() ⋯𝑇: $7! : $

( ⋅ 𝜇:($)
(()

Rearranging:

𝐿(𝑘) =F
.,/

𝑇./
(() <6?

(7)

⋅ F
=∈?7

𝜇:(=)
(()

Model for all trajectories from all ensembles:

𝐿 =F
(

𝐿(𝑘)

Formulation of the TRAM model



TRAM: workflow

𝐿 =A
X,Y,8

𝑇XY
(8) |%&

(!)

⋅A
8

A
=∈�!

𝑒:@(!)(=)𝜇 𝑥

𝑧�(=)
(8)

𝑧X
(8)𝑇XY

(8) = 𝑧Y
(8)𝑇YX

(8)

stationary probabilities 
(thermodynamics) kinetic probabilities (rates)

probabilistic model:

optimize  model parameters 𝑇 and 𝜇 (and z[𝜇])

Markov 
states and 
transition 

counts

bias 
potential 

values



Relation between the methods



TRAM: strategies for enhanced 
sampling of kinetics

Model system:



TRAM: strategies for enhanced 
sampling of kinetics

𝚫𝑮 MFPT



What is replica exchange?

• sample from generalized ensemble :

𝑝 𝑥B , 𝑥C , … , 𝑥* =
e./(!)1(!)(2))

𝑍($)
⋅
e./(*)1(*)(2+)

𝑍(D)
⋅ … ⋅

e./(,)1(,)(2,)

𝑍(E)
• accept exchanges with Metropolis criterion

𝑝'FF,GH = min 1,
e./(*)1(*)(2-)e./(-)1(-)(2*)

e./(*)1(*)(2*)e./(-)1(-)(2-)

with labels updated after an accepted exchange.
Fukunishi and Watanabe, J. Chem. Phys. 116, 9058 (2002)

𝛽(!)𝑈(!):

𝛽(')𝑈('):



The role of HREMD
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What is valid input data for TRAM?



Overlap in (d)TRAM

Jo et al, J. Phys. Chem. B 120 8733 (2016) Rosta et al, J. Comput. Chem. 30, 1634 (2009)



Overlap in (d)TRAM

Jo et al, J. Phys. Chem. B 120 8733 (2016) Rosta et al, J. Comput. Chem. 30, 1634 (2009)



Overlap of biased distributions
Biased distributions have to overlap!

Diagnostics: 
– Post-hoc replica exchange: How many exchanges would have been accepted if 

the simulation had been carried out with replica exchange between 
ensembles? How does this number compare to the number of simulated 
samples? 

score = 𝑁 +𝑀
1
𝑁 𝑀 +

-∈Q -

+
R∈Q 2

min 1,
𝑒*+, - - 𝑒*+, 2 R

𝑒*+, - R 𝑒*+, 2 -
≶ 1

– error of the free energies estimated by (M)BAR (equation from [1]). 
Alternative way to relate the overlap of distributions to the number of 
samples.

[1] Shirts and Chodera, Statistically optimal analysis of samples from multiple 
equilibrium states, J. Chem. Phys. 129, 124105 (2008)

- - 𝑈 . 𝑥
- - 𝑈 / (𝑥)
— exp[−𝛽𝑈 . (𝑥)]
— exp[−𝛽𝑈 / (𝑥)]

𝑥



Overlap in (d)TRAM

Markov states

ensembles

reversible transitions 
between Markov states

enough local overlap between 
biased probability distributions

Much of this is based on empirical evidence from numerical examples.



TRAM: combining normal MD with biased MD 

𝐿 =A
3,4,5

𝑇345
6%&
!

⋅A
5

A
7∈9!

𝑒:;!(7)𝜇 𝑥
𝑧>(7)
5

𝑧35𝑇345 = 𝑧45𝑇435

bias 
potential 

values

stationary probabilities 
(thermodynamics) kinetic probabilities (rates)

optimize  model parameters 𝑇 and 𝜇 (and z[𝜇])

Markov 
states and 
transition 

counts

probabilistic model:



WHAM derivation
log 𝐿 =Y

.,(
𝑁.
(() log 𝜋.

(()

=Y
.,(
𝑁.
(() log @6A6

(7)

∑? @?A?
(7)

=Y
.,(
𝑁.
(() log 𝜋.𝛾.

(() −Y
.,(
𝑁.
(() logY

/

𝜋/𝛾/
(()

=Y
.,(
𝑁.
(() log 𝜋.𝛾.

(() −Y
(
𝑁(() logY

/

𝜋/𝛾/
(()

𝜕𝐿
𝜕𝜋C

=Y
(

$I
(7)

@IAI
(7)AI

(7) −Y
(

$ 7 AI
7

∑? @?A?
7 = 0

!
@I
Y

(
$I
(7) =Y

(

$ 7 AI
7

∑? @?A?
7

𝜋C =
𝑁C

∑(
$ 7 AI

7

∑? @?A?
7



(d)TRAM: solution
update equations:

𝜋49:; =
∑5,3 𝑐54

(3)

∑=,5
>8S
T ?>S8

T @8
(T)AS

(T)

@8
(T)B8AS

(T)?@S
(T)BSA8

(T)

𝜈.
( ,DEF = 𝜈.

(()Y
/

𝑐./
( + 𝑐/.

( 𝛾/
(()𝜋/

𝛾.
(()𝜋.𝜈/

(() + 𝛾/
(()𝜋/𝜈.

(()

transition matrix:

𝑇./
(() =

𝑐./
( + 𝑐/.

( 𝛾/
(()𝜋/

𝛾.
(()𝜋.𝜈/

(() + 𝛾/
(()𝜋/𝜈.

(()


