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2.2

Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches
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2.3

Computer Arithmetic
Basics: How to operate on single bits? 

- Combinational (or: combinatorial) circuits (pure logic), sequential circuits (includes memory)
- See lectures on Boolean algebra, circuits, semiconductors etc.

Here: computer arithmetic serves as an example for handling larger data units (tables, graphics, …)

1. Some more formal basics

2. Methods and circuits for the implementation of the four basic operations +, -, *, /

3. Operation of an ALU (Arithmetic Logic Unit) of a computer 
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https://en.wikipedia.org/wiki/Logic_gate

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

https://en.wikipedia.org/wiki/Logic_gate
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2.4

Formal Basics
Humans: typically use the decimal system for calculations (although other systems exist) 
Computers: typically use the binary system for calculations 

 Thus, a conversion is necessary

Additionally, computer systems use other representations such as octal or hexadecimal for the more compact 
representation of larger binary numbers

 Therefore, it is important to understand some mathematical foundations of and relations between the different 
numbering systems

See also math for CS students!
- Here: only a quick overview
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NUMBERING SYSTEMS
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2.6

Requirements for Number Systems
It should be able to represent positive and negative numbers of a certain interval [-x : y]

It should be able to represent (roughly) the same amount of positive and negative numbers

The representation should be unambiguous

The representation should make calculations simpler – compare “our” decimal system with 
- Roman numerals
- Chinese numerals
- Babylonian numerals
- …
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https://en.wikipedia.org/wiki/Numeral_system

Try, e.g., LXIX * XCIX 
like you’re used to …

https://en.wikipedia.org/wiki/Numeral_system


2.7

Number Systems
Most common: positional number systems (https://en.wikipedia.org/wiki/Positional_notation)
Representation of numbers as a sequence of digits zi, with the radix point between z0 and z-1: 

-zn zn-1 ... z1 z0 . z-1 z-2 ... z-m e.g. 1234.567

Each position i of the sequence of digits is assigned a value, which is a power bi of the base (or: radix) b of the 
numbering system
- b-ary numbering system

The value Xb of the number is the sum of all single values of the positions zibi:
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2.8

Number Systems
Common number systems in computer science

Hexadecimal system: we typically use the letters A to F to represent the digits with values 10 to 15
Binary system: most important system inside a computer
Octal and Hexadecimal systems: very simple to convert into the binary system, easier to read 

fe80::9c0b:605c:16ba:55c2 0x5A3D $47AF3D1E #FFAA33
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Base (b) Number system Alphabet
2 Binary system 0,1

8 Octal system 0,1,2,3,4,5,6,7

10 Decimal system 0,1,2,3,4,5,6,7,8,9

16 Hexadecimal system 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F



2.9

CONVERSION INTO B-ARY NUMBER SYSTEMS
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Method 1 (following Euclid)
Conversion from the decimal system to a system with base b

Representation of a number
- Z = zn 10n + zn-1 10n-1 + ... + z1 10 + z0 + z-1 10-1 + ... + z-m 10-m

- =  yp bp + yp-1 bp-1 + ... + y1 b + y0 + y-1 b-1 + ... + y-q b-q

Generate the digits step-by-step starting with the most significant (leftmost) digit:

Step 1: search p according to the inequation bp ≤ Z < bp+1

- assign i = p and Zi = Z

Step 2: derive yi and the remainder Ri by division of Zi by bi

yi =  Zi div bi

Ri =  Zi mod bi

Step 3: Repeat step 2 for i = p-1,… and replace after each step Zi by Ri, until Ri = 0 or until bi is 
small enough (thus the precision high enough). 
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2.11

Method 1: example
Conversion of 15741.23310 into the hexadecimal system
Step 1: 163 ≤ 15741,233 < 164  highest power is 163

 error!
 15741.23310 ≈ 3D7D.3BA516
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Step 2: 15741.233 : 163 = 3 remainder 3453.233
Step 3: 3453.233 : 162 = D remainder 125.233
Step 4: 125.233 : 161 = 7 remainder 13.233
Step 5: 13.233 : 160=1 = D remainder 0.233
Step 6: 0.233 : 16-1 = 3 remainder 0.0455
Step 7: 0.0455 : 16-2 = B remainder 0.00253
Step 8: 0.00253 : 16-3 = A remainder 0.000088593
Step 9: 0.000088593 : 16-4 = 5 remainder 0.000012299



2.12

Method 2 (following Horner)
Conversion from the decimal system to a system with base b

Two steps: First consider the integer part of a number, than the decimals

Conversion of the integer part:

If we factor out the integer we get:

Xb = ((...(((zn b + zn-1) b + zn-2) b + zn-3) b ... ) b + z1) b + z0
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2.13

Method 2: example (part 1: integer)

Repeated division of the integer part by the base b. 

The remainders are the digits of the number Xb from the least to the most significant position.

Conversion of 1574110 into the hexadecimal system

1574110 : 16 = 983 remainder 13 (D16)

98310 : 16 = 61 remainder 7 (716)

6110 : 16 = 3 remainder 13 (D16)

310 : 16 = 0 remainder 3 (316)

 1574110 = 3D7D16
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Method 2: part 2 – conversion of the decimals

We can also write the decimals of a number in the following way: 

Yb = ((...((y-m b-1 + y-m+1) b-1 + y-m+2) b-1 + ... +y-2) b-1 + y-1) b-1

Method:
We multiply the decimals of the number by base b to get the fractional digits y-i from the most to the 
least significant position. (But we have to stop if the precision is good enough…)
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2.15

Method 2: example (part 2: decimals)
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Conversion of 0.23310 into the hexadecimal system:

0,233  *  16  =  3, 728

0,728  *  16  =  11, 648

0,648  *  16  =  10, 368

0,368  *  16  =   5, 888

z    = 3

z    = B

z    = A

z    = 5

-1

-2

-3

-4

}

}
Stop if precision is
good enough 0.23310 ≈ 0.3BA516  error!

0.233   *   16 = 3. 728

0.728   *   16 = 11. 648

0.648   *   16 = 10. 368

0.368   *   16 = 5. 888



2.16

CONVERSION INTO THE DECIMAL SYSTEM
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2.17

Conversion: Base b → Base 10
We represent the values of the single positions of the number we want to convert in our common decimal system 
and sum all values.

The value Xb of the number is the sum of all single values of all positions zibi: 
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2.18

101101,1101

1 * 2     =  0,0625 - 4

1 * 2     =  0,25- 2

1 * 2     =  0,5- 1

1 * 2     =  10

1 * 2     =  42

1 * 2     =  83

1 * 2     = 325

45,8125 10

Conversion: Base b → decimal system – Example 

TI II – Computer Architecture

Convert 101101.11012 into the decimal system

0.0625

0.25

0.5

45.812510  



2.19

Conversion of arbitrary positional number systems
First, convert the number into the decimal system, then use method 1 or 2 to convert into the final system

Special case: 
- If the base of one system is a power of the base of another system the conversion is quite simple: Replace a 

sequence of digits by a single digit or replace a digit by a sequence of digits, respectively.
- Example: Conversion of 0110100.1101012 into the hexadecimal system

24 = 16   ⇒ 4 binary digits → 1 hexadecimal digit

TI II – Computer Architecture

0011 0100  . 1101 0100

hexadezimal    3       4     .    D      4

0110100.110101dual

Fill-in missing zeros to get
complete groups of 4 digits. 



2.20

Questions & Tasks
- So, our computer does not even know simple math – what does this tell us?
- Why is the binary system so common in computers?
- Where can you find hex-notations in the context of computer systems?
- How can number conversion introduce errors?

TI II – Computer Architecture
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NEGATIVE NUMBERS
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2.22

Representation of negative numbers
We can use four different formats for the representation of negative numbers in computers: 

- Absolute value plus sign (V+S)

- Ones’ complement 

- Two’s complement 

- Offset binary / excess / biased

TI II – Computer Architecture



2.23

Representation with absolute value plus sign (V+S)
One digit represents the sign, typically the MSB 

- MSB = Most Significant Bit
The leftmost bit represents the sign of a number (by convention)

- MSB = 0  positive number 
- MSB = 1  negative number 

Example:
- 0001 0010 =   +18
- 1001 0010 =    -18

Disadvantages:
- Separate handling of the signs during addition and subtraction
- There are two representations of the number 0

- One with positive and one with negative sign (+0 and -0)

TI II – Computer Architecture



2.24

Ones’ complement
Flip all single bits of a binary number to get the number with a reversed sign. 

This is called a ones’ complement
- n is the number of digits, e.g. n=4  4 bit numbers

Example:
410 = 01002  -410 = 1011oc

-410 = (24 –1) – 4 = 1110 = 10112

Again, negative numbers have the MSB = 1 

Advantage (compared to absolute value plus sign)
- No separate handling of the MSB during addition or subtraction

Disadvantage
- Still two representations of zero (0000 and 1111 for 4 bit numbers)

TI II – Computer Architecture

zoc = (2n - 1) – z



2.25

Two’s complement
Avoid the disadvantage by adding 1 after applying ones’ complement:

This results in the two’s complement:

Only one representation of the zero!

0 . . . 0  1 . . . 1oc

 0 . . . 0tc

TI II – Computer Architecture

ztc = 2n - z



2.26

Two’s complement
Disadvantage: 

- Asymmetric interval of numbers that can be represented
- The lowest number has a greater absolute value (by 1) than the highest number

Example: 3 bit two’s complement numbers

Again, negative numbers have the MSB = 1 
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2.27

Representation of negative numbers – examples 
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Value plus sign: -77 = 1100 11012

Ones‘ complement : -77 = 1011 00102

Two‘s complement : -77 = 1011 00112

Represent –7710 using 8 bits

7710= 0100 11012

Flip all the bits

Add 1



2.28

Offset binary / excess / biased representation
Commonly used for the representation of exponents of floating point numbers (but also e.g. in signal processing 
as the converters are unipolar, i.e., they cannot handle negative values). 

This representation of an exponent is also called characteristic. 

The whole number range is shifted by adding a constant value (offset/excess/bias) so that the smallest number 
(largest negative value) gets the representation 0…0. 

Assuming n digits:  Offset = 2n-1

- Example: n=8  Offset 128

The number range is asymmetric. 
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2.29

Comparison of different representations

TI II – Computer Architecture
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2.30

Overview of the representations

TI II – Computer Architecture

1 1 10 1 10 1 10 1 13
1 1 00 1 00 1 00 1 02
1 0 10 0 10 0 10 0 11
1 0 00 0 01 1 1, 0 0 01 0 0, 0 0 00
0 1 11 1 11 1 01 0 1-1
0 1 01 1 01 0 11 1 0-2
0 0 11 0 11 0 01 1 1-3
0 0 01 0 0- - -- - --4

CharacteristicTwo‘s
complement

Ones‘ 
complement

Value + 
Sign

Decimal
value

Representation as



2.31

Questions & Tasks
- What do you get if you add 1 to the largest positive number?
- What happens if you subtract 1 from the largest (by absolute value) negative number?
- Thus, what should be done even for simple arithmetic operations like + and – (think of x + y < x, y > 0)?
- Can you represent ℕ or ℤ in a computer?

TI II – Computer Architecture



2.32

“REAL” NUMBERS (FIXED AND FLOATING POINT)

TI II – Computer Architecture

No, it is not
ℝ



2.33

Fixed and floating point numbers
Writing numbers on paper we use:

- digits 0 1 2 3 4 5 6 7 8 9
- sign + -
- point .

Representing numbers in a computer we only have:
- Binary digits (i.e. bits) 0 1

 We need rules for representing the value, the sign and the radix point (typically binary point) in a 
computer

Representing the sign and value: done (see above)

Two ways of representing the point

- Fixed point

- Floating point

TI II – Computer Architecture



2.34

Fixed point numbers
Convention

- The point is (virtually) located at a fixed position within the bit vector representing a binary number. 
- Typically, the point follows the LSB (least significant bit).

Characteristic
- Arbitrary numbers can be scaled into this format. 
- Negative numbers: use two’s complement. 
- Computers typically do not use fixed point numbers internally, but for input and output (e.g. think of amount of 

money, 37.42€)

TI II – Computer Architecture



2.35

Fixed point numbers
The type "integer" is a special fixed point format. 
Some programming languages allow for the definition of integers of different length. 

TI II – Computer Architecture

Size
(bit) Typical names Sign

Number range (using two‘s complement)

min max

8 char, octet, byte, modern: int8_t or uint8_t
signed −128 127

unsigned 0 255

16 Word, Short/short, Integer, modern: int16_t or uint16_t
signed −32,768 32.767

unsigned 0 65.535

32
DWord/Double Word, int, long (Windows on 16/32/64 bit
systems; Unix/Linux on 16/32 bit systems), modern: int32_t or
uint32_t

signed −2,147,483,648 2,147,483,647

unsigned 0 4,294,967,295

64 Int64, QWord/Quadword, long long, Long/long (Unix/Linux on 
64 bit systems), modern: int64_t or uint64_t

signed −9,223,372,036,854,775,808 9,223,372,036,854,775,807

unsigned 0 18,446,744,073,709,551,615

128 Int128, Octaword, Double Quadword
signed ≈ −1.70141·1038 ≈ 1.70141·1038

unsigned 0 ≈ 3.40282·1038

Source: Wikipedia



2.36

FLOATING POINT NUMBERS
FIRST: ABSTRACT VIEW

BE AWARE: COMPUTERS USE THE IEEE-P 754-FLOATING-POINT-STANDARD

TI II – Computer Architecture



2.37

Floating point representation of numbers
To represent very large or very small numbers we typically use the scientific notation know from school chemistry 
or physics (so-called log-linear representation):

The base b is fixed for a certain floating point representation (typically 2 or 16) and, thus, is typically not 
represented explicitly. 

Be aware: floating point numbers typically do not use the two’s complement but value plus sign.

The significand is sometimes also called mantissa or fraction, see https://en.wikipedia.org/wiki/Significand. 
(several different definitions exist…)
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X =  ± significand · bexponent

https://en.wikipedia.org/wiki/Significand


2.38

Floating point representation
The position of the radix point of the significand is by convention (e.g. left of the MSB)

The exponent is an integer represented by its characteristic. 

The computer uses a fixed number of digits for the significand and the characteristic.

The size of the characteristic determines the number range.

The size of the significand determines the precision of the representation. 
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2.39

Floating point format

TI II – Computer Architecture

decimal value = (-1)S × (0.significand) × bexponent

exponent = characteristic – b(y – 1) – x

y y-1 x x-1 0

S characteristic significand



2.40

Normalization
A floating point number is called normalized if the following holds for the mantissa:

1
𝑏𝑏
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 1

Using a binary representation this means that the first digit after the binary point equals 1, i.e., all normalized 
numbers start with 0.1….  

Exception: For the number 0 all digits are zero (0.0…0)
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Normalization
Assuming a special bit pattern for the 0, the first digit of the significand always equals 1.

Therefore, it is not necessary to represent this first digit of the significand internally.

This bit is called the “hidden bit”.

This saves a bit of memory per number or increases the precision using the same number of bits. 

Be aware: for all arithmetic operations and during the conversion into other representations this digit must not be 
neglected!
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Example: representation of 713510

3 different formats with 32 bit each using the base b = 2

Format a:  Fixed point using the two’s complement (typical integer)

TI II – Computer Architecture

0 000  0000  0000  0000  0001  1011  1101  11112 =     0000 1BDF16

31 30 0

S
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Example: representation of 713510
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Format b:  Floating point, normalized:
31 30 0

0 100 0110 1 110 1111 0111 1100 0000 00002 =     46EF 7C0016

S characteristic significand

23  22

Format c: Floating point, normalized, first "1" implicit (hidden bit):

31 30 0

0 1000 1101 101 1110 1111 1000 0000 00002 =     46DE F80016

23  22

S characteristic remainder of the significand



2.44

Representable number range
The number bit combinations is the same for all three examples (232)

However, the number range and, thus, the density of representable values on the number line is quite different!

TI II – Computer Architecture



2.45

Representable number range
Format a) Numbers between -231 und 231-1 

Format b) 

negative numbers -(1-2-23) ·2127 ...   -0.5·2-128

positive numbers  0.5·2-128 ...  (1-2-23)·2127

and ± 0

TI II – Computer Architecture
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31 30 0

S characteristic significand
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2.46

Representable number range
Format c) normalized floating point

negative numbers -(1-2-24)·2127 ...   -0.5·2-128

positive numbers 0.5·2-128 ...   (1-2-24)·2127

No representation of the 0!
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S characteristic remainder of the significand

23  22



2.47

Representable number range
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a)

b)

c)

underflowoverflow

0

-231 231-1

- (1-2-23)·2127 (1-2-23) ·2127- 0.5 ·2-128 0.5 ·2-128

- (1-2-24)·2127 (1-2-24) ·2127- 0.5 ·2-128 0.5 ·2-128

overflow



2.48

Characteristic numbers
In order to compare different floating point formats three characteristic numbers are useful:

- Maxreal: the largest representable, normalized, positive number 

- Minreal: the smallest representable, normalized, positive number

- Smallreal: the smallest number that can be added to 1 to get a result larger than 1 
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Characteristic numbers – example 
Using format b)

maxreal =  (1 – 2-23)·2127 minreal =  0.5 · 2-128

If we normalize 1 we get 0.5 · 21 i.e. the significand is 10000000000000000000000. 

The closest number larger than 1 representable in this format has in addition to the “1” in bit 22 also a “1” in bit 0. 
This results in the significand: 10000000000000000000001

Thus, smallreal = 0.000000000000000000000012· 21 =  2-23· 21  =  2-22
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2.50

Imprecisions
The gap between two representable floating point numbers grows exponentially with the absolute value of the 
numbers, while this gap is constant for fixed point numbers. 

Therefore, the imprecision when representing large values is higher. There is a trade-off between range and 
precision.

Computers violate the laws of math valid for real numbers 𝑥𝑥, 𝑥𝑥 ∈ ℝ !
- (although some programming languages call this type real) 

TI II – Computer Architecture
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Imprecisions
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Example
The associative property (x + y) + z = x + (y + z) does not always hold, even if there is no overflow or underflow. 

Let’s assume: x = 1; y = z = smallreal/2

(x + y) + z =  (1 +  smallreal/2) + smallreal/2 
= 1                           + smallreal/2 
=  1 

x + (y + z) = 1 + (smallreal/2 + smallreal/2)
= 1 + smallreal
≠ 1 
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Questions & Tasks
- Which format can represent more different values: 64 bit integer or floating point?
- Why using floating points at all?
- How can you increase the range or precision of floats? 
- Why do we normalize floats?
- Why can we live with the imprecisions of floats for many scenarios? 
- How can we achieve a higher precision or greater range? At what cost?
- What can we learn from the smallreal example when it comes to the addition of numbers?
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IEEE P 754 FLOATING POINT STANDARD
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Standardization (IEEE Standard) 
IEEE P 754 floating point standard

Many programming languages know floating point numbers with different precision and range
- E.g. using C: float

double
long double

The IEEE Standard defines several formants for representation, e.g.,
- IEEE single: 32 bit

IEEE double: 64 bit
IEEE extended: 80 bit 
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IEEE P 754 floating point standard 
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S characteristic significand

022233031

8 bit 23 bit

63

11 bit 52 bit

62 52 51 0

S characteristic significand

Example formats of the IEEE standard

Be aware that you will also find the term exponent for characteristic 
and the terms mantissa or fraction for significand!
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Properties of IEEE P 754
Base b equals 2. 

The first bit of the significand is assumed to be “1” (hidden bit), if the characteristic ≠ 0.

Normalization: the hidden bit is left of the binary point, i.e., 1.xxxxx (hidden bit convention)

If the characteristic = 0 it represents the same exponent as if the characteristic = 1. 

However, the first bit of the significand is the represented explicitly. The numbers represented this way 
are called subnormal (denormalized/denormal, https://en.wikipedia.org/wiki/Denormal_number).

This allows the representation of ±0 (significand and characteristic = 0).
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https://en.wikipedia.org/wiki/Denormal_number
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Properties of IEEE P 754
If all bits of the characteristic are “1” this indicates an exception.

- If all bits of the significand are “0” this represents an overflow, i.e. ± ∞. The processor can then trigger error 
handling.

- If the significand is ≠ 0 this is called NaN (not a number) and is used for signaling, e.g., invalid operations like 
the square root of a negative number

Internally, processors may use the IEEE standard with 80 bit to minimize rounding errors.
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Some parameters of IEEE P 754
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https://en.wikipedia.org/wiki/IEEE_754

https://en.wikipedia.org/wiki/IEEE_754
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Overview of the 64 bit IEEE format
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characteristic number remark

0 (-1)S 0.significand · 2 -1022 subnormal

1 (-1)S 1.significand · 2 -1022

… (-1)S 1.significand · 2 characteristic – 1023

2046 (-1)S 1.significand · 2 1023

2047 significand = 0: (-1)S ∞ overflow

2047 significand ≠ 0:  NaN not a number
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Rounding modes
IEEE requires “correct rounding”: 

- The rounded result is as if infinitively precise arithmetic was used to compute the value and then rounded at the 
end.

- As we will see: three extra bits are enough to achieve this!

IEEE standard defines five rounding modes: 
- Round to the nearest number

- Where ties round to the nearest even digit in the required position (“round to even”, the most common rule)
- Where ties round away from zero 

- Round to the nearest number toward 0
- Round up to the nearest number toward +∞
- Round down to the nearest number toward -∞
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The three “simple” rounding modes
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0

Round toward 0 Round toward 0

Round toward +∞

Round toward -∞
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Round to even
The most “difficult” rounding mode (but default and the most common):

- Round to the nearest number, where ties round to even

One method: use infinite precise arithmetic, then round
- Requires very long registers, not really efficient

Can this be done with less hardware?

Two situations require rounding when adding or subtracting numbers: 
- Carry 
- Exponent alignment (remember: add or subtract only if the exponents are equal!) 
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Example a: carry during addition – 234 + 851 = 1080
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We use base 10 and 3 significant digits in this example!

2.34 ×102

+8.51 ×102
carry -----------

10.85 ×102

rounded to 1.08 ×103
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Example b: different exponents – 234 + 2.56 = 237
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(base 10 and 3 significant digits)

2.34 ×102 2.34   ×102

+2.56 ×100 +0.0256 ×102
---------------

2.3656 ×102

rounded to 2.37   ×102

exponent
alignment
required
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Example c: carry and different exponents – 951 + 64.2 = 1020
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(base 10 and 3 significant digits)

(alignment and carry) 9.51  ×102
+0.642 ×102
-------------
10.152 ×102

rounded to                     1.02  ×103

For each of these examples we have to use “internally” more than 3 significant digits to achieve correct rounding.

There are also situations where more than 3 significant digits are needed even without rounding.
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Example d: subtraction – 147 - 87.6 = 59.4
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1.47  ×102

-0.876 ×102
-----------

0.594 ×102

In this example one additional „internal“ digit is 
sufficient. However, there are cases where this is not 
sufficient.
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Example e: 101 - 3.76 = 97.2
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1.01   ×102 1.01   ×102

-0.0376 ×102 -0.037  ×102
------------- -------------

0.9724 ×102 0.973  ×102

rounded to                        0.972  ×102 0.973  ×102

Deleting the least significant digit („6“) from 0.0376 results in 
0.973 instead of 0.972.

Thus, here we need more than 3 significant digits for correct 
rounding!
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Round and guard
If we ignore the “round to even” rule it can be shown that two additional digits are sufficient for correct rounding.  

- Guard g - tells us if we have to take a closer look at r. If g=5, then we could be in the middle between two 
numbers (example: base = 10). 

- Round r - if r > 0 then rounding is simple, as we are not in the middle – but what if r = 0? Are we exactly in the 
middle (i.e. can we apply round-to-even)?

However, "round-to-even“ requires some more effort.
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Example f: 4.5674 + 0.00025001 = 4.5677 (and not 4.5676)
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We have 5 significant digits:

4.5674 ×100 4.5674

2.5001 ×10-4 + 0.00025001
-------------
4.56765001

gr

rounded to 4.5677 

Round r and guard g are not sufficient –
there are some more digits important, but how many?

Idea: Did we drop something while truncating the number to the significant digits?
If yes, then set a sticky-bit
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Sticky bit
For a correct rounding it is sufficient to know, if all digits less significant than the round digit are equal to zero. 

A single bit is enough to store this information: "sticky"-bit

If we drop a digit during alignment that was not equal to zero we set the sticky bit (if we have bits, i.e., base = 2, 
then the sticky bit is simply the OR over all bits less significant than the round bit). 

Thus, the sticky bit tells us if we dropped something during alignment (and the necessary truncation due to the 
limitation of significant digits).

If the result ties, i.e., the distance to the next lower and higher floating point number is the same, then the sticky 
bit decides if we have to apply round-to-even or we are simply closer to one number.
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Questions & Tasks
- Can IEEE P 754 represent numbers smaller than minreal? What about zero? What is the price to pay?
- Can IEEE P 754 represent numbers larger than maxreal?
- What does “correct rounding” mean – are there no more errors?
- How many digits do we need to get correct results?
- If base = 2, how many extra bits do we need to perform “correct rounding” according to IEEE P 745?
- What is the idea of a sticky-bit? 
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ADDITION AND SUBTRACTION
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Addition and subtraction
Circuits for the addition of integers (fixed point, base 2, two’s complement):

- The base of all arithmetic operations

Very simple:
- Subtraction   ≙ addition of the negative value
- X - Y = X + (-Y)

We can also describe multiplication and division based on addition (however, more efficient circuits 
are known)

- For floating point numbers:
- Separate processing of significand/mantissa/fraction and characteristic/exponent
- Again, integer addition forms the base

Thus, basic types of adders are important (https://en.wikipedia.org/wiki/Adder_(electronics))
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From half adder to full adder
Addition of two binary digits a and b results in a sum s and a carry c.

Truth table:
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1011
0101
0110
0000
csba

This is called a half adder
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Half adder
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Equations:   s = a b ∨ a b = a ⊕ b

c = a b

Logic diagram and logic symbol (according to IEC):

=1

CO

Σa
b s

c

a
b s

c&

1 bit half adder
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Addition of multiple digits
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Additional input for the carry of less significant digits necessary.

ai bi ci si ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

ci is also called carry in CI

ci+1 is also called carry out CO

The truth table describes a full adder
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Equations, logic diagram and symbol
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CO

Σ

CI

=1

=1

& ≥ 1

&

ci+1

si

bi

ai

ci

Half adder 1

Half adder 2

bi

ai

ci
ci+1

si

Equations:

si = ai ⊕ bi ⊕ ci

ci+1 = ai ci ∨ bi ci ∨ ai bi = (ai ⊕ bi) ci ∨ ai bi

Full adder
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Ripple-carry adder
How to add two integers with n bits?

Simple solution:
- Use a full adder for each bit plus take the carry of the less significant bit as carry in to generate the sum plus 

the carry out. 
- The LSB (least significant bit) needs only a half adder. 
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CO

Σ

CO

Σ

CI CO

Σ

CI CO

Σ

CI

s2

c2

a0 b0

c3
cn+1

s1 sn-1
s0

cnc1

a1 b1 a2 b2 an-1 bn-1
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Problem
The result of a single bit position is valid only if the carry in based on less significant bit positions is computed.  

Worst case: the valid values for the carries ripple through all bit positions (thus the name ripple-carry adder). 

The time needed to get a stable result is proportional to the bits added. 

Therefore, the ripple-carry adder is sometimes also called an asynchronous parallel adder as it takes all bits of the 
operands in parallel. (asynchronous, because it depends on the value of the operand how long it takes before the 
output is stable) 
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Carry-lookahead adder
In order to avoid the disadvantage of long delays during addition using a carry-ripple adder, 
the carry-lookahead adder directly determines all carries based on the input operands

Equations:
- ci+1 = ai bi ∨ (ai ⊕ bi) ci = gi ∨ pi ci

- si = (ai ⊕ bi) ⊕ ci = pi ⊕ ci

Let’s define:
- gi = ai bi (generate carry) and 
- pi = (ai ⊕ bi) (propagate carry) 

We can derive gi und pi directly from the input bits of the two operands a and b. 
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Direct computation of the carries based on the inputs
We can recursively solve the computation of ci+1 by using the terms for ci. 

ci+1 = gi ∨ pi ci

This results in

c1 = g0 ∨ p0 c0

c2 = g1 ∨ p1 g0 ∨ p1 p0 c0

c3 = g2 ∨ p2 g1 ∨ p2 p1 g0 ∨ p2 p1 p0 c0

etc.

The time for addition is now (almost…) independent of the number of input bits as the computation of 
all carries can start immediately by “looking ahead” over all input bit positions – thus the name carry-
lookahead adder. 
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Logic diagram of a 3 bit carry-lookahead addierer
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≥1

&
& &

≥1

cs
3

g p

ab

=1

cs 22

2

g p

2

2 2

ab

=1

cs 11

1

=1&

g p

1

1 1

ab

=1

0 0

0 0

0

=1& =1&

c
0

0

& &&

≥1

c

parallel
logic for carries

c3 = g2 ∨ p2 g1 ∨ p2 p1 g0 ∨ p2 p1 p0 c0
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Carry-lookahead-Addierer
Problem: 

- The number of logic gates increases with the number of input bits.
- This increases the delay of the gates plus requires more space.

Solution:
- Cascading smaller carry-lookahead adders (carry-ripple between the carry-lookahead adders)
- carry-select adder, conditional sum adder, carry skip-adder, … 

(https://en.wikipedia.org/wiki/Adder_(electronics))
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Carry-lookahead adder
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Σ

3
2
1
0

3
2
1
0

CI CO

3
2
1
0

P

Q

Σ

Σ

3
2
1
0

3
2
1
0

CI CO

3
2
1
0

P

Q

Σ

0

ab

s

0 3 4 7a aab b b

sssssss

0 3 4 7

0 1 2 3 4 5 6 7

- - - -

c

Cascading two 4 bit carry-lookahead adders to add 8 bit integers
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SUBTRACTION
Addition and subtraction
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Subtraction
Subtraction by addition of the two’s complement. 

Remember: Two’s complement was flipping all bits and then adding 1. 

X  - Y =   X  + (Y + 1) =  X +Y +  1

Please note:
- We assume that both operands X and Y are in the format two’s complement.
- The result is again in the format two’s complement. 
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Subtractor
We can use an adder, take the minuend X as it is, invert the single bits of the subtrahend Y, and set the carry in 
CI. 
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1

Σ

0
1
2
3

0
1
2
3

CI CO

0
1
2
3

P

Q

Σ

1

1

1

1

X

Y

X - Y

Subtraction of two numbers in two‘s complement format.
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0000

0
2

4

6
-8

-2

-4

-6

1

3

5

7-7

-5

-3

-1

0001
0010

0011

0100

0101

0110
0111

1000
1001

1010

1011

1100

1101

1110
1111

Exception 1

We can distinguish three different cases for an addition
1)  Both summands are positive

- the sign bits of both summands are 0 
- the result must be positive 
- the result is correct only if its sign bit is 0, otherwise we 

have an overflow 
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5
+  2

=  7

0 1 0 1
0 0 1 0 

0 1 1 1

+
0 0 0 0

Überträge gleich 
Ergebnis korrekt

  5
+   6

=   11

0 1 0 1
0 1 1 0

1 0 1 1

Überträge ungleich 
Überlauf 
Ergebnis falsch

0 01 0

both carries are equal,
thus the result is correct

the carries are
not equal,
thus the result is
not correct
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Exception 2

2) Both summands are negative
- the sign bits of both summands are 1 
- the result must be negative
- the result is correct only if its sign bit is 1, otherwise we 

have an (negative) overflow 
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- 5
+  (- 2)

=   - 7

1 0 1 1
1 1 1 0

1 0 0 1

+
1 1 1 0

Überträge gleich 
Ergebnis korrekt

- 5
+  (- 6)

=  - 11

1 0 1 1
1 0 1 0

0 1 0 1

Überträge ungleich 
Überlauf 
Ergebnis falsch

1 00 1

0000

0
2

4

6
-8

-2

-4

-6

1

3

5

7-7

-5

-3

-1

0001
0010

0011

0100

0101

0110
0111

1000
1001

1010

1011

1100

1101

1110
1111

both carries are equal,
thus the result is correct

the carries are
not equal,
thus the result is
not correct
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Exception 3

3) Both summands have different signs
- the result is always correct
- the sign depends on the absolute value of the subtrahend 

or minuend
- we can ignore the carry generated by the MSBs 
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5
+  (- 6)

=   - 1

0 1 0 1
1 0 1 0

1 1 1 1

Überträge gleich 
Ergebnis korrekt

0 00 0

- 5
+   6

=    1

1 0 1 1
0 1 1 0

0 0 0 1

Überträge gleich 
Ergebnis korrekt

1 01 1

0000

0
2

4

6
-8

-2

-4

-6

1

3

5

7-7

-5

-3

-1

0001
0010

0011

0100

0101

0110
0111

1000
1001

1010

1011

1100

1101

1110
1111

both carries are equal,
thus the result is correct

both carries are equal,
thus the result is correct
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Overflow detection
It is very simple to detect an overflow during the addition/subtraction of integers in two’s complement:

- correct addition: the carries are equal

- overflow: the carries are not equal

We can generate an overflow bit using an XOR (exclusive or).
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Questions & Tasks
- We could use a half adder for the LSB. However, n-bit carry ripple adders can use a full adder for the LSB as 

well. What for?
- How does an adder react if an overflow occurs? What about the result? What about a subtractor?
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FLOATING POINT ADDITION
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Floating point addition
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How to add two floating point numbers a1 and a2?

a1 = s1 ×be1 a2 = s2 ×be2

Example: a1 = 3.21 ×102

a2 = 8.43 ×10-1

3 significant digits.

Remember: Computation is done with two additional 
digits (guard und round) plus the sticky bit.

significand G R S
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Floating point addition – step 1
1. Exponent alignment

- We can add floating point numbers only if the exponents are equal 

First: If e1 < e2, swap the operands to get: d = e1 - e2 ≥ 0 

Second: Shift right the significand s2 by d positions
- If d > 2, set the sticky bit, if any of the dropped digits had a value ≠ 0 (in case of binary digits, 

the sticky bit is the OR over all dropped bits).

Example: d = 2 - (-1) = 3

3.2100 ×102

0.0084 ×102 set the sticky bit because we dropped the 3 of 8.43 
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Floating point addition – steps 2 and 3
2. Add the significands

Example:
3.2100 ×102

0.0084 ×102

------------------
3.2184 ×102

3. Normalization
- Normalize the sum by shifting the significand and adjusting the exponent/characteristic.
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Floating point addition – step 4
4. Rounding
Round using one of the rounding modes while taking the digits g, r and the sticky bit into consideration

- most common: binary digits (bits) and round-to-even

Example:
3.2100 ×102

0.0084 ×102

------------------
3.2184 ×102

Rounded result: 3.22 ×102
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Example 1: 32 - 2.25 = 30 using 4 significands, base = 2

1.000 * 25 - 1.001 * 21

“Infinite” internal precision

1.000 0000 * 25

-0.000 1001 * 25 align, keep all the bits
0.111 0111 * 25 precise result (= 29.75)
1.110 1110 * 24 normalized
1.111      * 24 round up (= 30)

Using g(uard), r(ound), s(ticky) bits

plus 4 significands

1.000 000 * 25

-0.000 101 * 25 align, drop bit, set sticky
0.111 011 * 25

1.110 11 * 24 normalized
1.111    * 24 round up (= 30)
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Example 2: 32 - 3.75 = 28 using 4 significands , base = 2

1.000 * 25 - 1.111 * 21

“Infinite” internal precision

1.000 0000 * 25

-0.000 1111 * 25 align, keep all the bits
0.111 0001 * 25 precise result (= 28.25)
1.110 0010 * 24 normalized
1.110      * 24 round down (= 28)

Using g(uard), r(ound), s(ticky) bits

plus 4 significands

1.000 000 * 25

-0.000 111 * 25 align, drop bit, set sticky
0.111 001 * 25

1.110 01 * 24 normalized
1.110     * 24 round down (= 28)
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MIPS R10000 Floating Point Unit
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See literature for multiplication and division!
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ARITHMETIC LOGIC UNIT (ALU)
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Arithmetic logic unit
ALU (arithmetic logic unit): 

- Part of the execution unit of a processor
- Performs logic and arithmetic operations 

Inputs of an ALU: 
- Operands and control signals of the control unit 

Outputs of an ALU: 
- Results and status signals to the control unit 

Quite often ALUs in simple processors can operate on integers only. Floating point operations are off-
loaded to an FPU (floating point unit) or emulated in software as a sequence of fixed point operations. 
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Diagram of a simple ALU
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register X register Y

multiplexer

ALU1 ALU2
arithmetic logic

combinational circuit

ALU3

shifter

register Z

cout

over-
flow

sign
zero

s7

s6

s5

s4

s3

s2

s1

cin

s1 s2 ALU1 ALU2
0 0 X Y
0 1 X 0
1 0 Y 0
1 1 Y X

s6 s7 Z
0 0 ALU3
0 1 ALU3 ÷ 2
1 0 ALU3 × 2
1 1 store Z

s3 s4 s5 ALU3
0 0 0 ALU1 + ALU2 +cin

0 0 1 ALU1 – ALU2 – Not(cin)
0 1 0 ALU2 – ALU1 – Not(cin)
0 1 1 ALU1 ∨ ALU2
1 0 0 ALU1 ∧ ALU2
1 0 1 Not(ALU1) ∧ ALU2
1 1 0 ALU1 ⊕ALU2
1 1 1 ALU1 ↔ALU2
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Example operations of the ALU
Left shift of the ones’ complement of Y stored in Z:

- Control signals: s1… s7 = 10 111 10
- 10  : ALU1 = Y
- 111: ALU3 = ALU1  ALU2
- 10  : Z = ALU3 × 2

Is  X > Y ? 
- Check status signal "sign" after the operation Y – X. 
- Control signals: s1…s7 = 00 010 00 and      cin = 1

- 00  : ALU1 = X und ALU2 = Y
- 010: ALU3 = ALU2 – ALU1 – not(cin)
- 00  : Z = ALU3
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Questions & Tasks
- When do we set the sticky bit?
- Why is it enough to store a single sticky bit instead of a value?
- Does the ALU support loops, if-then-else etc.?
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Overview 
Numbering systems

- Positive numbers
- Negative numbers
- Number conversion
- Real numbers (fixed/floating point)

- Real systems use IEEE!
- Rounding of numbers

Simple circuits
- Addition / Subtraction
- See literature for Multiplication / Division

Arithmetic logic unit (ALU)
- Components of a simple ALU
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	TI II: Computer Architecture�Data Representation and Computer Arithmetic
	Content
	Computer Arithmetic
	Formal Basics
	Numbering Systems
	Requirements for Number Systems
	Number Systems
	Number Systems
	Conversion into b-ary number systems�
	Method 1 (following Euclid)
	Method 1: example
	Method 2 (following Horner)
	Method 2: example (part 1: integer)
	Method 2: part 2 – conversion of the decimals
	Method 2: example (part 2: decimals)
	Conversion into the decimal system�
	Conversion: Base b  Base 10
	Conversion: Base b  decimal system – Example 
	Conversion of arbitrary positional number systems
	Questions & Tasks
	Negative Numbers�
	Representation of negative numbers
	Representation with absolute value plus sign (V+S)
	Ones’ complement
	Two’s complement
	Two’s complement
	Representation of negative numbers – examples 
	Offset binary / excess / biased representation
	Comparison of different representations
	Overview of the representations
	Questions & Tasks
	“Real” Numbers (Fixed and floating point)�
	Fixed and floating point numbers
	Fixed point numbers
	Fixed point numbers
	Floating Point Numbers�First: abstract view��Be Aware: Computers USE the IEEE-P 754-Floating-Point-Standard�	
	Floating point representation of numbers
	Floating point representation
	Floating point format
	Normalization
	Normalization
	Example: representation of 713510
	Example: representation of 713510
	Representable number range
	Representable number range
	Representable number range
	Representable number range
	Characteristic numbers
	Characteristic numbers – example 
	Imprecisions
	Imprecisions
	Example
	Questions & Tasks
	IEEE P 754 Floating Point Standard�
	Standardization (IEEE Standard) 
	IEEE P 754 floating point standard 
	Properties of IEEE P 754
	Properties of IEEE P 754
	Some parameters of IEEE P 754
	Overview of the 64 bit IEEE format
	Literature
	Rounding modes
	The three “simple” rounding modes
	Round to even
	Example a: carry during addition – 234 + 851 = 1080
	Example b: different exponents – 234 + 2.56 = 237
	Example c: carry and different exponents – 951 + 64.2 = 1020
	Example d: subtraction – 147 - 87.6 = 59.4
	Example e: 101 - 3.76 = 97.2
	Round and guard
	Example f: 4.5674 + 0.00025001 = 4.5677 (and not 4.5676)
	Sticky bit
	Questions & Tasks
	Addition And Subtraction�
	Addition and subtraction
	From half adder to full adder
	Half adder
	Addition of multiple digits
	Equations, logic diagram and symbol
	Ripple-carry adder
	Problem
	Carry-lookahead adder
	Direct computation of the carries based on the inputs 
	Logic diagram of a 3 bit carry-lookahead addierer
	Carry-lookahead-Addierer
	Carry-lookahead adder
	Subtraction
	Subtraction
	Subtractor
	Exception 1
	Exception 2
	Exception 3
	Overflow detection
	Questions & Tasks
	Floating Point Addition
	Floating point addition
	Floating point addition – step 1
	Floating point addition – steps 2 and 3
	Floating point addition – step 4
	Example 1: 32 - 2.25 = 30 using 4 significands, base = 2
	Example 2: 32 - 3.75 = 28 using 4 significands , base = 2
	MIPS R10000 Floating Point Unit
	Arithmetic logic UNIt (ALU)�
	Arithmetic logic unit
	Diagram of a simple ALU
	Example operations of the ALU
	Questions & Tasks
	Overview 

