
Prof. Dr.-Ing Jochen H. Schiller
Inst. of Computer Science
Freie Universität Berlin
Germany

4.1

CISC vs. RISC
Data Types
Addressing
Instructions
Assembler

TI II: Computer Architecture
ISA and Assembly

TI II - Computer Architecture

Other
local
variables

Stack
frame

a [0]

a [1]

a [2]

EBP + 8

EBP + 12

EBP + 16

SIB Mode references
M[4 * EAX + EBP + 8]

i in EAX

EBP

2

Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches

TI II - Computer Architecture

3

Where are we now?

TI II - Computer Architecture

Level 5

Level 3

Level 4

Level 1

Level 0

Level 2

Operating system machine level

ISA (Instruction Set Architecture) level

Microarchitecture level

Assembly language level

Problem-oriented language level

Digital logic level

Translation (Compiler)

Translation (Assembler)

Partial interpretation (operating system)

Hardware

Interpretation (microprogram) or direct execution

Java, C#, C++, C, Haskell, Cobol, …

Java Byte Code, MSIL/CIL

Unix, Windows, iOS

x86, PPC, ARM, …

Netburst, ISSE, ASX, <none>, …

Core i7, ARM9, PPC620, …

Javac,
VS .NET

JVM, CLR;
JIT/Interpreter

JVM, CLR;
JIT/Interpreter

microprogram/
none

hardware

4

Information
This chapter is mainly for some background information about ISAs, assembler etc.

The assignments plus tutorials teach you how to program with assembler

We skip the operation system part as this is covered in the course “Operating Systems and Computer Networks”
- Subsystems, Interrupts and System Calls
- Processes
- Memory
- Scheduling
- I/O and File System
- Booting, Services, and Security

TI II - Computer Architecture

5

The classical SW/HW boundary

TI II - Computer Architecture

Software

Hardware

Hardware

C program

ISA level

ISA program executed
by microprogram or hardware

FORTRAN 90
program

FORTRAN 90
program compiled
to ISA program

C program
compiled
to ISA program

What is
visible to
the user?

6

Execution of operations
Interpretation or compilation of instructions from the ISA-layer

- High-level languages translated into instructions from the ISA
- Pure RISC processors can directly execute ISA instructions

- i.e. the hardware (HW) can execute these instructions
- More complex processors use microprogramming, flexibility and compatibility reasons:

- hardware changes leave ISA unchanged
- reprogramming to circumvent hardware problems
- more powerful ISA – simpler compilers

TI II - Computer Architecture

7

Example: A selection of the Pentium II integer instructions

TI II - Computer Architecture

Moves Transfer of control Condition codes
MOV DST,SRC Move SRC to DST JMP ADDR Jump to ADDR STC Set carry bit in EFLAGS register
PUSH SRC Push SRC onto the stack Jxx ADDR Conditional jumps based on flags CLC Clear carry bit in EFLAGS register
POP DST Pop a word from the stack to DST CALL ADDR Call procedure at ADDR CMC Complement carry bit in EFLAGS
XCHG DS1,DS2 Exchange DS1 and DS2 RET Return from procedure STD Set direction bit in EFLAGS register
LEA DST,SRC Load effective addr of SRC into DST IRET Return from interrupt CLD Clear direction bit in EFLAGS reg
CMOV DST,SRC Conditional move LOOPxx Loop until condition met STI Set interrupt bit in EFLAGS register

Arithmetic INT ADDR Initiate a software interrupt CLI Clear interrupt bit in EFLAGS reg
ADD DST,SRC Add SRC to DST INTO Interrupt if overflow bit is set PUSHFD Push EFLAGS register onto stack
SUB DST,SRC Subtract DST from SRC Boolean POPFD Pop EFLAGS register from stack
MUL SRC Multiply EAX by SRC (unsigned) AND DST,SRC Boolean AND SRC into DST LAHF Load AH from EFLAGS register
IMUL SRC Multiply EAX by SRC (signed) OR DST,SRC Boolean OR SRC into DST SAHF Store AH in EFLAGS register
DIV SRC Divide EDX:EAX by SRC (unsigned) XOR DST,SRC Boolean Exclusive OR SRC to DST Miscellaneous
IDIV SRC Divide EDX:EAX by SRC (signed) NOT DST Replace DST with 1 s complement SWAP DST Change endianness of DST
ADC DST,SRC Add SRC to DST, then add carry bit Shift/rotate CWQ Extend EAX to EDX:EAX for division
SBB DST,SRC Subtract DST & carry from SRC SAL/SAR DST,# Shift DST left/right # bits CWDE Extend 16-bit number in AX to EAX
INC DST Add 1 to DST SHL/SHR DST,# Logical shift DST left/right # bits ENTER SIZE,LV Create stack frame with SIZE bytes
DEC DST Subtract 1 from DST ROL/ROR DST,# Rotate DST left/right # bits LEAVE Undo stack frame built by ENTER
NEG DST Negate DST (subtract it from 0) RCL/RCR DST,# Rotate DST through carry # bits NOP No operation

Binary coded decimal Test/compare HLT Halt
DAA Decimal adjust TST SRC1,SRC2 Boolean AND operands, set flags IN AL,PORT Input a byte from PORT to AL
DAS Decimal adjust for subtraction CMP SRC1,SRC2 Set flags based on SRC1 - SRC2 OUT PORT,AL Output a byte from AL to PORT
AAA ASCII adjust for addition Strings WAIT Wait for an interrupt
AAS ASCII adjust for subtraction LODS Load string SRC = source # = shift/rotate count
AAM ASCII adjust for multiplication STOS Store string DST = destination LV = # locals
AAD ASCII adjust for division MOVS Move string

CMPS Compare two strings
SCAS Scan Strings

8

COMPLEX INSTRUCTION SET COMPUTER (CISC)

TI II - Computer Architecture

Some call it
“complete”…

9

Complex Instruction Set Computer (CISC) 1
Reasons for CISC

- Execution of complex instructions faster than execution of equivalent programs with the same function
- Micro programming allows for more complex instructions
- More complex instructions lead to shorter programs thus faster loading (transfer-rate gap between CPU

internally and CPU-main memory)
- Bigger is better – more instructions sound more powerful…it’s marketing!
- Direct support of programming constructs of higher languages using more complex instructions (e.g. string

compare)
- Support of specialized powerful compilers
- Compatibility (we can do everything like before plus xyz)
- Support of special purpose applications (e.g. matrix operations)

 more transistors/chip, higher programming languages and special purpose applications favor “complex”
instructions

TI II - Computer Architecture

10

Complex Instruction Set Computer (CISC) 2
Reasons against CISC

- Much faster main memories (argument of the 80’s, today again a problem) and the use of cache memory
speed-up program execution

- Micro programs are more and more complex (so where is the difference between programming and micro
programming…)

- Replacement of complex instructions using several simpler (much faster) instructions
- Longer development cycles
- Very complex control units
- Large micro programs with (potentially with errors)
- Real programs use only a small fraction of the large instruction set frequently!

TI II - Computer Architecture

11

CISC – really needed?
System programs in XPL on IBM/360:

- 90% of all instructions used: 10 different instructions
- 95% of all instructions used: 21 different instructions
- 99% of all instructions used: 30 different instructions

COBOL programs on IBM/370:
- 90% of all instructions used: 26 different instructions
- 99% of all instructions used: 48 different instructions
- Only 84 different instructions used at all

TI II - Computer Architecture

12

The 10 most used instructions in SPECint92 for Intel x86

TI II - Computer Architecture

Instruction Percentage [%]
load 22
conditional branch 20
compare 16
store 12
add 8
and 6
sub 5
move register-register 4
call 1
return 1
Total 95

13

Limitations of CISC architectures
Usage of instructions (80/20 rule)

- Only 20% of the instructions used frequently
- Many powerful instructions (rarely used)
- Complex instruction format(s)
- Micro programming

Critical problem: number of cycles per instruction (CPI)
- Many classical CISC architectures have CPI >> 2

- Motorola MC68030: CPI = 4-6
- Intel 80386: CPI = 4-5

- BUT: optimized code for Pentium/Itanium/… – typical CPI ≈ 1
- Superscalar processors e.g. issuing 4 instructions in parallel could theoretically go down to 0.25, but:

floating-point, SIMD, branch mis-predictions, memory latency …

TI II - Computer Architecture

14

REDUCED INSTRUCTION SET COMPUTER (RISC)

TI II - Computer Architecture

15

Reduced Instruction Set Computer (RISC)
The instruction set consists of

- a few, absolutely necessary instructions (≤ 128) and
- instruction formats (≤ 4) with a
- fixed instruction length of 32 bit and only some
- addressing modes (≤ 4).

This allows a much simpler implementation of the control unit and saves space on the chip for additional units.

Many general-purpose registers, at least 32, are needed.

Memory access is only possible via special load and store instructions.

TI II - Computer Architecture

16

Register/register architecture
Memory access is via load and store operations only.

All other instructions work on the CPU registers only, e.g., arithmetic operations load operands from registers and
store results in registers only.

This basic principle is called
- register/register architecture or
- load/store architecture and is typical for many (original) RISC computers.

TI II - Computer Architecture

17

Additional features of RISC computers
If possible, all instructions should be implemented in a way that they finish within a single processor
cycle.

Consequence: pure RISC processors do not use micro programming
- RISC processors introduced enhanced pipelining mechanisms (today, many processors use pipelining for the

micro instructions, e.g., Pentium 4 and up).

Furthermore, the early RISC processors had a software-controlled pipeline (compilers inserted delay
NOPs, introduced delayed jumps etc.) instead of special hardware.

Aside
- PC processors like the Pentium 4 (and up) use micro programming, the internal micro architecture (netburst) is

rather RISC, the ISA is CISC.

TI II - Computer Architecture

18

RISC
Reasons for

- Single-chip implementation (yes, today “everything” fits on a single chip)
- Shorter development cycles
- Higher clock rates, pipelining
- Re-use of saved chip space for, e.g., cache

Reasons against
- Bottleneck in the memory interface, today again main memory is much slower compared to internal

registers/cache
- Space on a chip is not that critical anymore

TI II - Computer Architecture

19

Early RISC processors
IBM 801 project

- Already 1975, Cocke, IBM research, Yorktown Heights

MIPS project
- Started 1981, Hennessy at the University of Stanford
- The first fully functioning chip was finished in 1983 (NMOS VLSI)
- This project was the starting point of the MIPS corporation.

Berkeley RISC project
- Started 1980, Patterson at UC Berkeley
- Origin of the SPARC processor
- Basic principle of overlapping register windows
- The instruction set contained only 31 instructions with a fixed length of 32 bit and only 2 instruction formats
- Only 3 addressing modes

TI II - Computer Architecture

20

RISC from today’s perspective
What is left from the early ideas of RISC (in many controllers, RISC processors, RISC cores), e.g.:

- Instruction pipelining
- Load/Store architecture
- Large register file, e.g.,

- 32 general-purpose and
- 32 floating point register

- A unified instruction format, e.g., 32 bit
- Few addressing modes
- No micro programming

- Good example: RISC-V, https://en.wikipedia.org/wiki/RISC-V - RISC with some extras
- SIMD/vector processing
- Hypervisor/virtualization support
- Different versions depending on use (embedded, 32/64/128 bit, …)
- Compressed instructions
- …

TI II - Computer Architecture

https://en.wikipedia.org/wiki/RISC-V

21

Differences between RISC and CISC processors 1
Pure RISC prefer the Harvard architecture

- Separate memory for instructions and data (operands) and, thus, two address and two data busses
 parallel fetching of instruction(s) and operand(s) possible

Simplified versions
1. Two separate bus systems up to the L1 caches, but only one main memory/unified L2/L3 cache (cheaper,

standard with today’s systems)
2. Only a single, multiplexed bus system

TI II - Computer Architecture

22

Differences between RISC and CISC processors 2
Control unit

- Hard-wired
- Instruction register is a simple FIFO queue
- Each pipeline stage has its own register
- A simple combinational circuit can “interpret” the OpCodes in each stage directly

Register file
- Consists of a large number of (general purpose) registers
- Supports the simultaneous selection of several registers

- E.g. 4 port register file: simultaneous write in R0, R1 and read from R2, R3

TI II - Computer Architecture

23

Differences between RISC and CISC processors 3
Execution unit

- Uses a load/store architecture, loads the operands in parallel via 2 operand busses from the register file and
writes back the result within the same clock cycle into the register file.

- No direct connection between ALU and external bus, all data transfer done via load/store via the register file.

Exception
- Register bypass to avoid pipeline hazards (forwarding techniques)

TI II - Computer Architecture

24

The future of RISC?
Today

- Again, processors much faster than RAM/interconnection
- Frequent load/stores as bottleneck
- Integration of > 5 billion transistors on a single chip feasible

Thus
- Development of VLIW (Very Large Instruction Word) processors
- HP/Intel Itanium, very short pipeline, compiler does most of the work, powerful ISA (IA-64), less memory

accesses
- Commercial Failure! But still some use: https://en.wikipedia.org/wiki/Very_long_instruction_word

The future?
- RISC considered harmful? Not in embedded systems…
- Will legacy stay there forever…

- seems so with x86-64 and similar…
- New opportunities with open architectures like RISC-V

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Very_long_instruction_word

25

Questions & Tasks
- Check the instruction set of current processors (Intel, ARM, AMD, …) – is it RISC or CISC?
- Which of the initial RISC ideas survived?
- There is a trade-off between RISC and CISC – when to favor RISC? Why using CISC?

TI II - Computer Architecture

26

CISC, RISC, VM & ADDRESSING
Examples of ISAs

TI II - Computer Architecture

27

Typical processors: Pentium, SPARC, JVM
The following processors serve as examples for different ISAs
Pentium, Core i3/5/7/9

- Originates from the classical x86 CISC architectures, today 64 bit
- Still CISC to the outside, but many RISC features inside
- Other CISC examples: Athlon, …, Ryzen, many classical ancestors (VAX, IBM, ...)

UltraSPARC (Ultra Scalable Processor Architecture)
- Originates from the early RISC projects (like the MIPS processor)
- Still RISC, although extended in many ways
- Can be found in, e.g., SUN computers, industry control systems
- Other RISC examples: Alpha, MIPS, Power, PowerPC, RISC-V

JVM (Java Virtual Machine)
- Either seen as virtual processor or real HW (e.g., picoJava)
- Stack machine (operations take place on a stack)
- Heavily biased by Java
- Other virtual machine examples: CLR, P-Code, WebAssembly

TI II - Computer Architecture

28

Instruction formats

Example: C:= A + B
a) Zero-address instruction

- stack architectures: push A; push B; ADD; pop C
b) One-address instruction

- Accumulator implicitly operand and result: load A; ADD B; st C
c) Two-address instruction

- One operand becomes result: ADD B,A; move A,C
d) Three-address format

- ADD C,A,B

TI II - Computer Architecture

29

Addressing modes
Addressing mode

- Different possibilities to calculate the address of an operand or the branch target address in the memory

Classical
- Address of operands or branch target address directly given in the instruction (absolute address)

Disadvantages
- Absolute addresses are fixed during programming and, thus, the compiled program determines its location in

memory
- Accessing, e.g., dynamic tables require a change in the absolute address for each instruction – ROMs cannot

be used as instruction memory!

TI II - Computer Architecture

30

Addressing modes
Solution

- Calculation of the address during runtime (dynamic address calculation)

TI II - Computer Architecture

Address in program dynamic address calculation
(instruction triggers calculation)

Logical Address
Memory management unit
(virtual memory management)

Physical Address

31

Addressing modes – some examples
Be aware:

- Naming may differ depending on the architecture
- Not all processors support all modes

Absolute/direct: jmpa address  PC := address
PC relative: jmpo offset  PC := PC’ + offset
Register indirect: jmpr R  PC := R
Sequential execution: nop  PC := PC’
Register (direct): mul R1,R2,R3  PC := PC’; R1 := R2*R3
Base plus offset: load R1,R2,val  PC := PC’; R1 := mem(R2 + val)
Immediate: add R1,R2,val  PC := PC’; R1 := R2 + val
Implicit: load x  PC := PC’; accumulator := x

Indexed absolute, base plus index (plus offset), scaled, autoincrement/-decrement, …
- See https://en.wikipedia.org/wiki/Addressing_mode

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Addressing_mode

32

Example: register indirect addressing

TI II - Computer Architecture

Example:

LD R1, (A0) (load)
(Load the register R1 with the content of the memory word the
address register A0 points to)

Memory
Instruction register Processor

OpCode

+ / - Index or base
register,
(Stackpointer)

Operand

AReg

Address
(Stackpointer)

Register file

33

Questions & Tasks
- Several or more complex addressing modes vs. load/store architecture – advantages/disadvantages?
- What is the advantage of using a virtual machine such as JVM, CLR, etc.?
- What is the motivation behind relative / logical or virtual / physical addresses?

TI II - Computer Architecture

34

PROCEDURES, TRAPS, INTERRUPTS & CO.

TI II - Computer Architecture

35

Procedures, Traps, Interrupts & Co.
Many reasons for non-linear program execution

- Jumps, branches
- Procedure calls, subroutines, method invocation
- Multithreading, parallel processes, co-routines
- Hardware interrupts (processor external reasons)
- Traps, software interrupts (processor internal reasons)

Non linear program execution is the normal case!
- And invalidates standard cache content ...

- Trace caches can help (more later)

TI II - Computer Architecture

36

Program execution

TI II - Computer Architecture

Linear, without branches With branches

37

Procedure call
(subroutine, method, ...)

TI II - Computer Architecture

(a)

Calling
procedure

(b)

Called
procedure

A called
from main
program

A returns
to main
program

CALL

CALL

CAL
L

RETURN

RETURN

RETURN

38

Co-routine call
(parallel process, multithreading,...)

TI II - Computer Architecture

(a)

A called
from main
program

A returns
to main
program

(b)

RESUME B

RESUME A

RESUME B

RESUME B

RESUME A

RESUME A

39

How to handle exceptions?
During runtime exceptions may occur, i.e., interruptions of the programmed flow of instructions

Reasons
- Errors in the operating system while executing application programs or errors in the hardware
- Requests of external components for attention of the processor
- …

Exceptional situations may require the interruption of the currently running program or even its termination

Are exceptions exceptional?

TI II - Computer Architecture

40

Exception handling
Handling of exceptions requires specialized routines (Interrupt Service Routine, ISR)

A specialized hardware component (interrupt system, interrupt controller) typically supports the selection and
activation of an ISR

An ISR has the same structure as a subprogram, but there are also some differences

TI II - Computer Architecture

41

ISR vs. subprogram/subroutine

TI II - Computer Architecture

Activity Subroutine/subprogram ISR
Activation call subroutine INT instruction or hardware

activation

Return after completion RET instruction
(return from subroutine)

RETI instruction
(return from interrupt)

Calculation of starting address Starting address of called
subroutine written in calling
program

Starting address of called ISR
determined via interrupt table

Saving status Subroutine call typically saves
only PC on a stack

ISR calls save the PC and
PSW on a stack

42

ISR vs. subprogram/subroutine
The processor always executes subroutine calls as programmed.

However, the processor executes ISR only if triggered and the Interrupt Enable bit in the PSW is set.

Reasons for exception handling
- External reasons (asynchronous events): incoming data, device ready, mouse movement, …
- Internal reasons (synchronous events): system calls, debugging, change of privilege, …

TI II - Computer Architecture

43

External reasons for exceptions
RESET

- Reset of the processor, e.g., triggered by a button, power supply, watch dog timer, …

HALT
- Stop the execution of the processor, e.g., to avoid access conflicts on the system bus during DMA (direct

memory access)

ERROR
- Call of an error handler routine, e.g., due to bus errors

Interrupt
- Interrupt request triggered by an external device, e.g., to announce incoming data of an input device
- 2 types: maskable/non maskable (NMI)

TI II - Computer Architecture

44

Internal reasons for exceptions
Software Interrupts
-INT instruction in the program triggers an interrupt (system calls, debugging, …)

Traps
- Exceptions caused by internal events, e.g., overflow, division by zero, stack overflow, …

TI II - Computer Architecture

45

Example: Calculation of the start address of an Interrupt Service Routine (ISR)

TI II - Computer Architecture

ISR

Memory

Interrupt
Vector
Table

Start Address

Base Address

Interrupt
Source

Int. Vector
Number

x 2, 4, … Scaling

Data Bus

INT

INTA
+

Address Bus

Base Address
Register

46

Typical steps of an ISR I
1. Interrupt activation
2. Finalize the instruction currently in execution
3. Check, if software interrupt or internal/external hardware interrupt
4. Check if Interrupt Enable bit is set

 allow interrupt
5. If it is a hardware interrupt: find source of interrupt, activate INTA (interrupt acknowledge)
6. Save PSW and PC on stack
7. Reset Interrupt Enable bit to avoid an additional interrupt in this stage

TI II - Computer Architecture

47

Typical steps of an ISR II
8. Calculate start address of ISR (e.g. based on the interrupt vector table) and load it into the PC
9. Execute the Interrupt Service Routine:

- Push the used register on stack
- Set the Interrupt Enable bit to allow other interrupts (i.e. interrupts can interrupt interrupts!)
- Do the real work of the ISR
- Pop the registers from stack
- Return from interrupt handling using the IRET instruction

10. Restore PSW and PC and continue with the interrupted program

Be aware: if the ISR is too large it blocks the computer!

TI II - Computer Architecture

48

Interrupt vector table
Typically, located at a well-known address, e.g., in ROM (starting at address 0000:0000 for 80X86 processors)

Contains the start addresses of the ISRs

The source of an interrupt creates an interrupt number pointing at the entry in the interrupt vector table

Can be way more complex …

TI II - Computer Architecture

49

Examples of interrupt vector tables

TI II - Computer Architecture

https://www.ti.com/

ARM Cortex-M4Espressif ESP32-S2

TI MSP430

https://www.espressif.com/ ht
tp

s:
//w

w
w

.a
rm

.c
om

/

https://www.ti.com/
https://www.espressif.com/
https://www.arm.com/

50

Time sequence of multiple interrupts

TI II - Computer Architecture

Computer with 3 I/O devices
● Printer, priority 2
● Hard disc, priority 4
● RS232, priority 5

51

Handling of multiple interrupt sources
Cyclic polling of interrupt sources by the interrupt controller (interrupt flag for each source in a status register of
the controller).

If the interrupt flag for a component is set
 Stop cyclic polling and start ISR for the source.

Several new/additional interrupt requests possible during or after the execution of an ISR.
 Two alternative ways of treating new/additional interrupts

TI II - Computer Architecture

52

Polling: 1. method
Continue cycling polling at the interrupt source following the last served source  all interrupt sources have an
equal chance of being served („fair“ processor sharing)

TI II - Computer Architecture

8 2

7 3

5

1

46

CPU

8 2

7 3

1

46

CPU

5

Interrupt source
currently served

New interrupt requests
during serving interrupt source 4

53

Polling: 2. method
Cyclic polling always starts at a pre-determined first source  Different sources automatically get different
priorities. Polling favors components with higher priority.

TI II - Computer Architecture

8 2

7 3

5

1

46

CPU

8 2

7 3

1

46

CPU

5

Interrupt source
currently served

New interrupt requests
during serving interrupt source 4

54

Polling

TI II - Computer Architecture

Priorities of the old 80286 (and many other x86):

Priority Exception
0 RESET Reset/initialization
1 TRAP Exception during instruction execution

INT Software interrupt
2 TRACE Single step execution
3 NMI Non-maskable interrupt
4 ... Co-processor error
5 IRQ Maskable interrupts

Disadvantage of polling:

Using software for cyclic prioritization and identification of interrupts
is too time consuming.

55

Daisy chaining using hardware
Use specialized hardware for prioritization and identification of interrupts.

Example: Chaining of interrupt sources to a priority chain (Interrupt Daisy Chain).

Each source for an interrupt uses dedicated hardware for connecting with a successor and predecessor
(decentralized prioritization)

The first source in the chain has automatically the highest priority.

The priority of the other sources depend on the position in the chain.

TI II - Computer Architecture

56

Daisy chaining using hardware

TI II - Computer Architecture

Interrupt source 0

µP
Status register IRQ0IACK

IRQ

IACK0

IE0

IP0 VNR0

Interrupt source 1

IRQ1

IE1

IP1 VNR1IACK1 IACK2

57

Questions & Tasks
- Name the key differences between a subprogram and an ISR!
- What is the purpose of an ISR?
- Could a computer operate without ISRs?
- Looking at the typical steps of an ISR – which step(s) should be uninterruptable?
- How to handle multiple interrupt sources?

TI II - Computer Architecture

58

ASSEMBLER

TI II - Computer Architecture

59

Where are we now?

TI II - Computer Architecture

Level 5

Level 3

Level 4

Level 1

Level 0

Level 2

Operating system machine level

ISA (Instruction Set Architecture) level

Microarchitecture level

Assembly language level

Problem-oriented language level

Digital logic level

Translation (Compiler)

Translation (Assembler)

Partial interpretation (operating system)

Hardware

Interpretation (microprogram) or direct execution

Java, C#, C++, C, Haskell, Cobol, …

Java Byte Code, MSIL/CIL

Unix, Windows, iOS

x86, PPC, ARM, …

Netburst, ISSE, ASX, <none>, …

Core i7, ARM, PPC620, …

Javac,
VS .NET

JVM, CLR;
JIT/Interpreter

JVM, CLR;
JIT/Interpreter

microprogram/
none

hardware

60

Compiler vs. Assembler
Assembler

- Source: symbolic representation of a machine language (assembly language)
- Destination: numerical representation of the machine language (instructions from ISA)
- Examples: inline assembler in Visual Studio, MASM, ilasm, asm (gcc, Linux), MMIXal, nasm, ...

Compiler
- Source: high-level language (depends on the definition of „high“ ...), e.g., C, Java, C#, Cobol, Modula, C++, ...
- Destination: assembler language or (built-in assembler) numerical representation of the machine language

(instructions from ISA)
- Examples: C#-Compiler in Visual Studio, gcc, cc, javac, ...

Assembler language
- Pure assembler language: 1:1 mapping onto ISA instructions
- But additionally: symbolic names, addresses, labels

TI II - Computer Architecture

61

Reasons for an assembler level
Full access to HW features

- (almost) all (visible) registers are exposed to the assembler language, all flags can be read or set, many
„hidden“ features can be used

- E.g., try accessing the Pentium performance counters from within Java

Performance
- Optimized code for special purposes

- Real-time: exact number of CPU cycles can be counted, guaranteed access times to registers, deterministic response
times of sub-routines (again: try Java and real-time – and see what a garbage collector does...)

- Low memory footprint: no useless overhead, optimized loops, etc.

But much harder to program in assembler
- Thus typically combined with, e.g., C – only performance critical parts of a program will be tuned via (inline)

assembler (https://en.wikipedia.org/wiki/Inline_assembler)

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Inline_assembler

62

Examples for assembler: N = I + J
Pentium
FORMULA:

MOV EAX,I ; register EAX = I
ADD EAX,J ; register EAX = I + J
MOV N,EAX ; N = I + J

I DW 3 ; reserve 4 byte initialized to 3
J DW 4 ; reserve 4 byte initialized to 4
N DW 0 ; reserve 4 byte initialized to 0

SPARC
FORMULA:

SETHI %HI(I),%R1 ! R1 = high-order bits of the address of I
LD [%R1+%LO(I)],%R1 ! R1 = I
SETHI %HI(J),%R2 ! R2 = high-order bits of the address of J
LD [%R2+%LO(J)],%R2 ! R2 = J
NOP ! wait for J to arrive from memory
ADD %R1,%R2,%R2 ! R2 = R1 + R2
SETHI %HI(N),%R1 ! R1 = high-order bits of the address of N
ST %R2,[%R1+%LO(N)] ! N = I + J

I: .WORD 3 ! reserve 4 byte initialized to 3
J: .WORD 4 ! reserve 4 byte initialized to 4
N: .WORD 0 ! reserve 4 byte initialized to 0

TI II - Computer Architecture

63

Pseudo instructions
Pseudo instructions or assembler directives

- Help a lot for assembler programming
- Depend on designer of the assembler, not the ISA

Examples (MASM for Pentium)
- DB allocate storage for one or more (initialized) bytes
- DW allocate storage for one or more (initialized) 32 bit words
- PROC start a procedure
- MACRO start a macro definition
- INCLUDE fetch and include another file
- IF start conditional assembly based on a given expression
- PUBLIC export a name defined in the module

TI II - Computer Architecture

64

Macros vs. procedures
Example macro: swap P, Q

SWAP MACRO
MOV EAX,P
MOV EBX,Q
MOV Q,EAX
MOV P,EBX

ENDM

Differences Macro Procedure
When is the call made? During assembly During execution
Is the body inserted into the object

program every place the call is made? Yes No
Is a call instruction inserted into the object

program and later executed? No Yes
Must a return instruction be used after the

call is done? No Yes
How many copies of the body appear in

the object program? One per macro call 1

Macros are „textually“ inserted into the assembler program each time a call is made, formal parameters are
converted into actual parameters (i.e., the above macro can be used for SWAP A,B as well as SWAP X,Y)

TI II - Computer Architecture

65

The assembler process
Step-by-step translation does not work

- Forward references: symbols used before being defined ...

Solution: two-pass translator or single-pass plus conversion into intermediate format
- Pass: reading the source

First step
- Check syntax
- Create a symbol table, opcode table, literal table
- Check instruction length (opcode, operands, ...)

Second step
- Generate object code (*.o, *.obj, ...)
- Generate information for linker

TI II - Computer Architecture

66

Generation of an executable binary program

TI II - Computer Architecture

67

Example Structure of an Object Module / File
Different formats exist (e.g. COFF, ELF)

Relocation often done by MMU (or code is position
independent) – but also loader can relocate

https://en.wikipedia.org/wiki/Object_file

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Object_file

68

Example object modules

TI II - Computer Architecture

Object module A

0

100

200

300

400

BRANCH TO 200

MOVE P TO X

CALL B

0

100

200

300

400

500

600

BRANCH TO 300

MOVE Q TO X

CALL C

Object module B

0

100

200

300

400

500
Object module C

BRANCH TO 200

MOVE R TO X

CALL D

0

100

200

300

MOVE S TO X

BRANCH TO 200

Object module D

Each module has its own
address space starting at 0

69

Objects before/after linking and relocation

TI II - Computer Architecture

Before
relocation and
linking

After
relocation and
linking

70

Dynamic linking

TI II - Computer Architecture

A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

E A R T H

A I R

F I R E

w A T E R

Indirect word

Name of the
procedure is
stored as a
character
string

To earth
Linkage information
for the procedure
of AIR

A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

Address of earth
E A R T H

A I R

F I R E

W A T E R

Invalid address

Invalid address

Before EARTH is called After EARTH has been called and linked

Invalid address

Invalid address

Invalid address

Invalid address

Invalid address

71

Shared libraries
DLL (Dynamic Link Library, Windows), shared library (Unix)

- Save a lot of memory as they appear only once
- Many processes „share“ the same code (instructions)

TI II - Computer Architecture

User process 1 User pro

DLL

Header

A

B

C

D

A lot more info given in
OS and compiler

courses!

72

Questions & Tasks
- Why using assembler today?
- Why using macros? Typically they require more space…
- When is the starting address of an object determined? (Many answers possible … When do we really need the

address at the latest?)

TI II - Computer Architecture

73

Summary
Soft-/Hardware boundary
Complex Instruction Set Computer (CISC)
Reduced Instruction Set Computer (RISC)
Examples of ISA
Instructions formats
Addressing formats
Types of instructions
Procedures, Traps, Interrupts & Co.
Assembler

TI II - Computer Architecture

	TI II: Computer Architecture�ISA and Assembly
	Content
	Where are we now?
	Information
	The classical SW/HW boundary
	Execution of operations
	Example: A selection of the Pentium II integer instructions
	Complex Instruction Set Computer (CISC)�
	Complex Instruction Set Computer (CISC) 1
	Complex Instruction Set Computer (CISC) 2
	CISC – really needed?
	The 10 most used instructions in SPECint92 for Intel x86
	Limitations of CISC architectures
	Reduced Instruction Set Computer (RISC)�
	Reduced Instruction Set Computer (RISC)
	Register/register architecture
	Additional features of RISC computers
	RISC
	Early RISC processors
	RISC from today’s perspective
	Differences between RISC and CISC processors 1
	Differences between RISC and CISC processors 2
	Differences between RISC and CISC processors 3
	The future of RISC?
	Questions & Tasks
	CISC, RISC, VM & Addressing
	Typical processors: Pentium, SPARC, JVM
	Instruction formats
	Addressing modes
	Addressing modes
	Addressing modes – some examples
	Example: register indirect addressing
	Questions & Tasks
	Procedures, Traps, Interrupts & Co.�
	Procedures, Traps, Interrupts & Co.
	Program execution
	Procedure call�(subroutine, method, ...)
	Co-routine call�(parallel process, multithreading,...)
	How to handle exceptions?
	Exception handling
	ISR vs. subprogram/subroutine
	ISR vs. subprogram/subroutine
	External reasons for exceptions
	Internal reasons for exceptions
	Example: Calculation of the start address of an Interrupt Service Routine (ISR)
	Typical steps of an ISR I
	Typical steps of an ISR II
	Interrupt vector table
	Examples of interrupt vector tables
	Time sequence of multiple interrupts
	Handling of multiple interrupt sources
	Polling: 1. method
	Polling: 2. method
	Polling
	Daisy chaining using hardware
	Daisy chaining using hardware
	Questions & Tasks
	Assembler
	Where are we now?
	Compiler vs. Assembler
	Reasons for an assembler level
	Examples for assembler: N = I + J
	Pseudo instructions
	Macros vs. procedures
	The assembler process
	Generation of an executable binary program
	Example Structure of an Object Module / File
	Example object modules
	Objects before/after linking and relocation
	Dynamic linking
	Shared libraries
	Questions & Tasks
	Summary

