
Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

2.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universität Berlin, Germany

TI III: Operating Systems & Computer Networks
Subsystems, Interrupts, and System Calls

TI 3: Operating Systems and Computer Networks

2.2

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

2.3

Hierarchical System View

4. Interrupts
• Objects: interrupt service routines (ISRs)
• Operations: call, mask, unmask

3. Procedures
• Objects: subroutines, call stack
• Operations: stack pointer, call, return

2. Instruction Set
• Objects: stack, microcode compiler, scalar and vector

data
• Operations: add, subtract, load, store, branch, …

1. Electronic Circuits
• Objects: registers, memory cells, logic gates
• Operations: register or memory access

TI 3: Operating Systems and Computer Networks

13 Shell

Shared and
distributed resources

12 User processes

11 Directories

10 Devices

9 File system

8 Communications

7 Virtual memory

Pre-processor
resources6

Local secondary
storage

5 Primitive processes

4 Interrupts

Hardware support

3 Procedures

2 Instruction set

1 Electronic circuits

2.4

Hierarchical System View

7. Virtual Memory
• Objects: segments, pages
• Operations: read, write, load

6. Secondary Storage
• Objects: blocks of data, device channels
• Operations: read, write, lock, unlock

5. Primitive processes (program being
executed)

• Objects: simple processes, semaphore, ready lists
• Operations: suspend, resume, wait, signal

TI 3: Operating Systems and Computer Networks

13 Shell

Shared and
distributed resources

12 User processes

11 Directories

10 Devices

9 File system

8 Communications

7 Virtual memory

Pre-processor
resources6

Local secondary
storage

5 Primitive processes

4 Interrupts

Hardware support

3 Procedures

2 Instruction set

1 Electronic circuits

2.5

Hierarchical System View

13. Shell
• Objects: user programming interface
• Operations: operations in shell command language

12. User Processes (incl. data on used resources)
• Objects: user processes
• Operations: create, terminate, suspend, resume

11. Directories
• Objects: directories
• Operations: create, delete, append, remove, search, list

10. Devices
• Objects: external devices, e.g., printer, display, and keyboard
• Operations: open, close, read, write

9. File System
• Objects: named files
• Operations: create, delete, open, close, read, write

8. Inter-process Communication (IPC)
• Objects: channels, shared memory
• Operations: create, delete, open, close, read, write

TI 3: Operating Systems and Computer Networks

13 Shell

Shared and
distributed resources

12 User processes

11 Directories

10 Devices

9 File system

8 Communications

7 Virtual memory

Pre-processor
resources6

Local secondary
storage

5 Primitive processes

4 Interrupts

Hardware support

3 Procedures

2 Instruction set

1 Electronic circuits

2.6

Questions & Tasks
-Compare this system view with the layered structure from Computer Architecture – which parts do you
recognize?

-Compare this system view with the memory hierarchy from Computer Architecture – how can you map the
different types of memory to this system view?

-Take your computer, your OS and try to find out the different components of this system view – can you find or
identify them all?

-For those used to window-based user interfaces, touch screens, voice interfaces, gesture-controlled gadgets
etc. – try to find a shell and play with it! (yes, those were the old days, but you can learn a lot going back to the
roots!)

TI III - Operating Systems and Computer Networks

2.7

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

2.8

Interrupts - Motivation
A lot of devices are connected to a computer, e.g.,
-Keyboard, hard disk, network interface

These devices occasionally need CPU service:
-Keyboard: a key is pressed
-Hard disk: a task is completed
-Network interface: a packet has arrived

BUT: it is not predictable when these devices need to be serviced

How does the CPU find out that a device needs attention?
-Two options: Interrupts and Polling

TI 3: Operating Systems and Computer Networks

2.9

Interrupts versus Polling

TI 3: Operating Systems and Computer Networks

Interrupts Polling

Give each device a wire that it
can use to signal the CPU.

Ask the devices periodically if an
event has occured.

Like a phone that rings when a
call comes in.

Like a phone without a bell: You have
to pick it up every few seconds to see
if you have a call.

No overhead when no requests
pending, efficient use of CPU
time.

Takes CPU time even when no
requests pending.

Devices are serviced as soon as
possible - low latency.

Response time depends on polling
rate.

2.10

Interrupt Service Routines

Interrupt handling is performed by the operating
system (device drivers) in interrupt service
routines (ISRs).

Interrupts temporarily discontinue the currently
executing application.

TI 3: Operating Systems and Computer Networks

2.11

Interrupt Vector Table

• Interrupt vector table maps interrupts to
service routines that handle them

• Table has one entry for each interrupt
• Each entry contains the address of the ISR

(interrupt vector)
• Table resides in main memory at a constant

address (interrupt base address)
• Interrupt number provides index into the table

TI 3: Operating Systems and Computer Networks

2.12

Detecting Interrupts

TI 3: Operating Systems and Computer Networks

2.13

Detecting Interrupts

TI 3: Operating Systems and Computer Networks

2.14

Detecting Interrupts

TI 3: Operating Systems and Computer Networks

2.15

Steps of Interrupt Handling
Example: Handling of an I/O event

TI 3: Operating Systems and Computer Networks

2.16

Types of Interrupts
Hardware interrupts (asynchronous)
-Triggered by hardware devices, e.g.,

-Timer
- I/O device
-Printer

Software interrupts (synchronous)
-Triggered within a processor by executing an instruction
-Often used to implement system calls

Exceptions, e.g.,
-Arithmetic overflow, division by zero
-Illegal instruction
-Illegal memory access

TI 3: Operating Systems and Computer Networks

2.17

Multiple Interrupts

Sequential interrupt processing:

Delay of interrupt handling unpredictable under
load

Nested interrupt processing:

Delay depends on interrupt priority level
Highest priority guarantees constant delay
Required for real-time applications

TI 3: Operating Systems and Computer Networks

2.18

Questions & Tasks
-Go back to Computer Architecture if you want to learn more about interrupts!

-Remember the issues with pipelining, branch prediction etc.
-Polling seems to be a bad idea – come up with scenarios where polling could make sense!
-What should be considered when programming an ISR?

-Think of timing and registers
-Figure out the interrupts (type, frequency, priority etc.) on your system – are interrupts frequent?

TI III - Operating Systems and Computer Networks

2.19

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

2.20

System Calls
User applications access system services by calling system calls that are part of the system interface.

Typical modes of execution:
-User mode (ring 3):

-Typical mode for user processes
-Limited access to hardware features
-May request privileged services via system calls

-Kernel/privileged/system/control mode (ring 0):
-Typical mode for kernel of operating system
-Full access to hardware features
-Memory access beyond own address space
-Required for implementation of device drivers (low-level), scheduling, virtual memory

Handling a user request within the kernel implies switching from user to kernel mode.

TI 3: Operating Systems and Computer Networks

Ring 0

Ring 1

Ring 2

Ring 3

2.21

Context / Mode / Process Switch
“Context switch” may refer to:

Mode switch between user and kernel mode
-Short interruption of current process (e.g. while handling system call)
-No modification of process state required

Process switch between different (user) processes
-May occur (depending on scheduler) when flow of control moves from user process to operating system:

- Interrupt: Response to external asynchronous event
-Timer interrupt: periodic process switch
-I/O interrupt: possibly event a process is waiting for
-Memory fault: Loading of a swapped memory segment with interleaved execution of another process

-Trap: Response to error caused by process
-System call: Process requests OS service

-More expensive than mode switch due to process state, processor caches, ...

TI 3: Operating Systems and Computer Networks

2.22

Implementation of Syscalls (1)
Subroutine call into operating system
-Used in very simple operating systems without separate address spaces

-No hardware-enforced security
-User processes run with full access to hardware (ring 0)

-Compiler / linker / loader insert call addresses into program
-Interrupt handling terminates with a simple jump back into program (“RETI”)

Example:
-MS-DOS & Embedded Systems

TI 3: Operating Systems and Computer Networks

2.23

Implementation of Syscalls (2)
Machine-level instruction “system call” (supervisor call, SVC)
-Raises trap / exception / software interrupt
- Interrupt service routine detects cause and branches into corresponding service routine

-Possibly within same address space, so no process switch
-Compiler inserts parameters for system calls
-Terminates with return

Example: most UNIX kernels

TI 3: Operating Systems and Computer Networks

Kernel
mode

User
mode

2.24

Implementation of Syscalls (3)
Call of system module / object
-Microkernel manages jump into address space of the corresponding system module in response to CALL alarm

-Process switch required
-Return into calling address space with RETURN

TI 3: Operating Systems and Computer Networks

Kernel mode

User mode

2.25

Implementation of Syscalls (4)
Dispatching a task to a system process
-Microkernel dispatches task to corresponding system process in response to SEND alarm
-System process receives task with RECV

-Process switch required
-Same method used for delivering result

Example: Mach, Minix

TI 3: Operating Systems and Computer Networks

Kernel mode

User mode

2.26

Questions & Tasks
-Why having such a “complicated” system like syscalls at all?
-(Real) Micro kernels seem to be a smart idea – think of draw-backs!
-The “simple” implementation of syscalls (version 1) looks pretty unsecure – where could still use this method
without headaches?

-The following section gives you some examples – use a disassembler to find such examples, read man pages
to find out more about syscalls, follow the link to POSIX resources!

TI III - Operating Systems and Computer Networks

2.27

System Calls and System Library
System library hides system calls from programmers
Example write():

Value -1 in register EAX on error

TI 3: Operating Systems and Computer Networks

2.28

System Calls and System Library
Example: Linux system calls

TI 3: Operating Systems and Computer Networks

%eax Name Source %ebx %ecx %edx %esx %edi
1 sys_exit kernel/exit.c int - - - -
2 sys_fork arch/i386/kernel/process.c struct pt_regs - - - -
3 sys_read fs/read_write.c unsigned int char * size_t - -
4 sys_write fs/read_write.c unsigned int const char * size_t - -
5 sys_open fs/open.c const char * int int - -
6 sys_close fs/open.c unsigned int - - - -
7 sys_waitpid kernel/exit.c pid_t unsigned int * int - -
8 sys_creat fs/open.c const char * int - - -
...

http://man7.org/linux/man-pages/man2/syscalls.2.html

http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html#pt_regs
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html#size_t
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html#size_t
http://man7.org/linux/man-pages/man2/syscalls.2.html

2.29

System Calls and System Library

TI 3: Operating Systems and Computer Networks

WRITE(2) Linux Programmer's Manual WRITE(2)

NAME
write - write to a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

write() writes up to count bytes from the buffer pointed buf to the
file referred to by the file descriptor fd.

The number of bytes written may be less than count if, for example,
there is insufficient space on the underlying physical medium, or the
RLIMIT_FSIZE resource limit is encountered (see setrlimit(2)), or the
call was interrupted by a signal handler after having written less
than count bytes. (See also pipe(7).)
…

2.30

POSIX
Portable Operating System Interface (POSIX)

Standard for operating system API
- IEEE 1003, ISO/IEC 9945

Three main parts:
-POSIX Kernel APIs (system call interface)
-POSIX Commands and Utilities
-POSIX Conformance Testing

Operating system, that implement POSIX:
- INTEGRITY, Linux, BSD/OS, A/UX, LynxOS, Mac OS X, MINIX, RTEMS, SkyOS, > Windows NT

TI 3: Operating Systems and Computer Networks

2.31

POSIX Versions

POSIX.1, Core Services
-(includes Standard ANSI C)
-Process Creation and Control
-Signals (IPC)
-Floating Point Exceptions
-Segmentation Violations (VMM)
-Illegal Instructions
-Bus Errors
-Timers
-File and Directory Operations
-Pipes
-C Library (Standard C)
- I/O Port Interface Control

POSIX.1b, Real-time extensions
-Priority Scheduling
-Real-Time Signals
-Clocks and Timers
-Semaphores
-Message Passing
-Shared Memory
-Asynch and Synch I/O
-Memory Locking

POSIX.1c, Threads extensions
-Thread Creation, Control, and Cleanup
-Thread Scheduling
-Thread Synchronization
-Signal Handling

TI 3: Operating Systems and Computer Networks

See: http://pubs.opengroup.org/onlinepubs/9699919799/

http://pubs.opengroup.org/onlinepubs/9699919799/

2.32

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

	TI III: Operating Systems & Computer Networks �Subsystems, Interrupts, and System Calls
	Content
	Hierarchical System View
	Hierarchical System View
	Hierarchical System View
	Questions & Tasks
	Content
	Interrupts - Motivation
	Interrupts versus Polling
	Interrupt Service Routines
	Interrupt Vector Table
	Detecting Interrupts
	Detecting Interrupts
	Detecting Interrupts
	Steps of Interrupt Handling
	Types of Interrupts
	Multiple Interrupts
	Questions & Tasks
	Content
	System Calls
	Context / Mode / Process Switch
	Implementation of Syscalls (1)
	Implementation of Syscalls (2)
	Implementation of Syscalls (3)
	Implementation of Syscalls (4)
	Questions & Tasks
	System Calls and System Library
	System Calls and System Library
	System Calls and System Library
	POSIX
	POSIX Versions
	Content

