Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

Tl 3: Operating Systems and Computer Networks

Freie Universitat G(LS

TI Ill: Operating Systems & Computer Networks
Processes

t’Ik
Created
Preempted
return ~ nough not enough memor. v
to usel memory, (swapping system only)
Use
Running preempt .
. wap ol N
Prof. Dr.-Ing. Jochen Schiller retum g e pu—

Computer Systems & Telematics BN

Running
Freie Universitat Berlin, Germany 'mmvtC/l \ ‘..m,, ‘_,.mp
interrupt return exit

3.1

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4, Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

32

Freie Universitit £

Definitions of a Process

Program in execution

Instance of a program running on a computer
-There may be multiple instances of the same program, each as a separate process

Unit characterized by
- Execution of a sequence of instructions
-Current state
-Associated block of memory

Tl 3: Operating Systems and Computer Networks 2R3

Freie Universitét (S) Berlin

Related Concepts to “Process”

Thread: One (of several) runtime entities that share the same address space
-Easy cooperation, requires explicit synchronization
-A process may consist of several threads

L2 Task Manager — a X

File Options View

Application: User-visible entity, one or more processes processes [Performance | App history | Starup | Users | Detals | Servies
- 3% 16% 6% 0%
MName CPU Memory Disk Metwork
Apps (3) :
ﬂ“ Microsoft PowerPoint 0,1% 84,7 MB 0 MB/s 0 Mbps
&2 Snipping Tool 0,4% 2,8 MB 0 MB/s 0 Mbps
2 Task Manager 0,1% 14,2 MB 0 MB/s 0 Mbps

Background processes (55)

] Adobe Acrobat Update Service 0% 0,7 MB 0 MB/s 0 Mbps

[E7 AGS Service 0% 0,7 MB 0 MB/s 0 Mbps

@ AudialsNotifier (32 bit) 0,4% 20,7 MB 0,1 MB/s 0,1 Mbps

"‘} Cisco AnyConnect User Interfac... 0% 17,3 MB 0 MB/s 0 Mbps

[0 COM Surrogate 0% 09 MB 0 MB/s 0 Mbps

@ Common User Interface (32 bit) 0% 1,1 MB 0 MB/s 0 Mbps 5
Fewer details End task

Tl 3: Operating Systems and Computer Networks 3.4

Program vs. Process

Multiple parts
-Program code — text section

-Current activity — program counter, processor
registers

-Stack — temporary data
-Data section — global variables
-Heap — dynamic memory

Program is passive entity, process is active

-Program becomes process when executable file
loaded into memory

One program can be several processes

Tl 3: Operating Systems and Computer Networks

max

Freie Universitét ({1

stack

heap

data

text

S

3.5

Tasks of an OS concerning processes

Interleaved execution (by scheduling) of multiple processes
-Maximization of processor utilization
-Reduction of response time

Allocation of resources for processes
-Consideration of priorities
-Avoidance of deadlocks

Support for Inter-Process Communication (IPC)

On-demand user-level process creation
- Structuring of applications

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.Sl
TR

3.6

Freie Universitat i

Process execution (Trace)

| 8000 (= 5000 8000 12000
5001 8001 12001
5002 8002 12002
CPU 5003 8003 12003
5004 12004
5005 12005
0 5006 12006
™ 5007 12007
DISPATCHER 5008 12008
5009 12009
5010 12010
5000_ 5011 12011
{a) Trace of Process A | (b) Trace of Process B | (c) Trace of Process C
8000 3000 = Starting address of program of Process A

8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

MAIN MEMORY

Tl 3: Operating Systems and Computer Networks 3.7

Process execution (Trace)

1 5000
. 2 5001
rnmmw - 3 5002
] 4 5003
5 5004
Ty TIewTTTT
CPU 7 10l
8 8000
9 8001
0 10 8002
11 8003
100 12 8004
DISPATCHER IT§I0wTTTTT
14 101
15 12000
5000 16 12001
18 12003
10 | 12004
20 100
21 101
22 5005
8000 23 5006
24 5007
- B 25T Iew T
L 26 101
12000 27 8005
28 8006
29 8007
30 8008
31 0 8009
32 100
MAIN MEMORY 33 I 161

Tl 3: Operating Systems and Computer Networks

""" TIMER INTERRUPT

\SCHEDULING

OVERHEAD!

""" TIMER INTERRUPT

“““ TIMER INTERRUPT

----- TIMER INTERRUPT

----- TIMER INTERRUPT

Freie Universitit (!

3.8

iy,

Freie Universitat G| Sy
e

Questions & Tasks

-Check the number and type of processes and threads running on your computer — surprised?

-What are many of the “invisible” processes used for? Who started them?

-Why can several instances of the same program running as individual processes make sense?
-What could be disadvantages?

-Who is responsible for the “interleaved execution” of multiple processes?

- But how can this be done if we assume a single processor running a single process that does not want to
leave this processor?

-Name some criteria for schedulers!

TI 111 - Operating Systems and Computer Networks

39

Simple Process Model

Process is in one of two states:
-running
-not running

Enter

How to implement?

Tl 3: Operating Systems and Computer Networks

Dispatch

T

Not
Running

‘\//

Pause

Running

Exit

Freie Universitt £

WELT Y,

3.10

Simple Process Model

Running processes managed in queue;

Enter

Queue

What information required?

Tl 3: Operating Systems and Computer Networks

Dispatch

Pause

-

Processor

Exit

Freie Universitt £

WELY,

3.11

I

Freie Universitit

Process Control Block (PCB)

Definition: OS data structure which contains the information needed to manage a process (one PCB per process)

Process identifiers IDs of process, parent process, and user

User-visible registers
Control and status registers:
CPU state » Stack pointer (SP)

* Program counter (PC)

* Processor status word (PSW)

Scheduling information:
» Process state, priority, awaited event

Accounting information:

_ _ * Amount of memory used, CPU time elapsed
Control information « Memory management:

e Location and access state of all user data

I/O management:
» Devices currently opened (files, sockets)

Tl 3: Operating Systems and Computer Networks 3.12

Freie Universitat (|8

Process Control Block (PCB)

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/0 status
information

Accounting
information

Figure 3.1 Simplified Process Control Block

Tl 3: Operating Systems and Computer Networks 8.8

Reasons for Process Creation

Interactive logon
-User logs onto a terminal
-May create several processes as part of logon procedure (e.g. GUI)

Created by the OS to provide a service
-Provide a service to user program in the background (e.g. printer spooling)
-Either at boot time or dynamically in response to requests (e.g. HTTP)

Spawned at application start-up
-Separation of a program into separate processes for algorithmic purposes

Always spawned by existing process

-Operating system creates first process at boot time
-Processes are organized in a tree-like structure ("pstree’)

Tl 3: Operating Systems and Computer Networks

Freie Universitét ({1

TS

3.14

Process Termination

Execution of process is completed
-process terminates itself by system call

Other user process terminates the process
-Parent process or other authorized processes

OS terminates process for protection reasons
-Invalid instruction (process tries to execute data)
-Privileged instruction in user mode
-Process tries to access memory without permission
-1/0-Error
- Arithmetic error

Some exceptions can be caught and handled by the process.

Tl 3: Operating Systems and Computer Networks

Freie Universitat G| Sy
e

i

WELY,

il

3:15

Freie Universitat (.Sl
NG
Ve

Questions & Tasks

-What are disadvantages of the simple FIFO-queue in our simple process model?
-What could be alternatives?

- Start your favorite process monitor, then start programs, use them, terminate them and monitor the list of
current processes and threads to get a better understanding of your system!

-How can you Kkill a process that goes crazy?

-Can you (as a normal user) kill all processes? Try it and see what happens! PLEASE: Do not do this while
running anything important, save all files before you do this ...

-What is the role of a administrator/root/superuser in this context?

TI 111 - Operating Systems and Computer Networks 3.16

Freie Universitit £

Process Model

Simple model with two states

Dispatch

/_\

Enter Not ' Exit
Running Running

\/

Pause

Problems
-Most of the processes will be waiting for 10
-Different IO devices
-Different priorities

=» Extend the model

Tl 3: Operating Systems and Computer Networks 3.17

Freie Universitit £

Extended Process Model

Five states including creation, termination, and resource handling:

Running: currently being executed
Ready: ready to run, waiting for execution
Blocked: not ready to run, waiting for external event, e.g., completion of I/O operation
New: newly created process, not yet in running set
Exit: completed/terminated process, removed from running set
. Dispatch
Admit —ee - Release
New —_— Ready Running — Exit
-
l Timeout

Blocked

Tl 3: Operating Systems and Computer Networks 3.18

Freie Universitit (!

Process States over Time

Process B X ‘ arataieletatatele et etetele ety
S S S S S S SO

Process C

Dispatcher

Tl 3: Operating Systems and Computer Networks 3.19

Freie Universitit

Implementation of Process States

Assign process to different queues based on state of required resources
Two queues:

-Ready processes (all resources available)

-Blocked processes (at least one resource busy)

Ready Queune
Admit Dispatch
‘ - -

Release

Timeout

Blocked Queue

Event - Event Wait
Occurs ‘ ‘ ‘ ‘ ‘ ‘

But what happens if processes need different resources?

Tl 3: Operating Systems and Computer Networks 3.20

Improved Implementation

Several queues one for each resource / type of resource

Admit

Ready Queue

Event 1
Occurs

Event 2
Occurs

More efficient, but fairness
iIssues must be considered

Dispatch

p] Processor

Timeout

Freie Universitét]

Release

Event 1 Queue

Event 1 Wait

Event 2 Queue

Event 2 Wait

Eventn Queue

Eventn

Occurs

Tl 3: Operating Systems and Computer Networks

Event n Wait

(b) Multiple blocked queues

e,

3.21

Suspension / Swapping of Processes

Freie Universitat 0
Swapping motivated by two observations:

-Physical main memory is (was) a scarce resource

-Blocked processes may wait for longer periods of time (e.g. during I/O, while waiting for requests, ...)
= Swap blocked processes to secondary storage thereby reducing memory usage

Dispatch
—® Ready

Timeout

Lrs

Event

Suspend
Suspend -s—————— Blocked

Tl 3: Operating Systems and Computer Networks

3.22

Freie Universitit £

Extended Process State Diagram
Two additional considerations

-Blocked/swapped processes may become ready to run when event occurs
-Ready and/or running processes may be swapped even without waiting for event

‘u‘?ﬁ*
) S
=" - 1\ = 'PE’:'{
P =
» Activate ‘ Dispatch ™~
Ready/ ——- Read R ’ Release Exi
A 1 Release _
Suspend -—f———— cady g — hkunning xit
A Suspend Timeout
=g = ;
4 g
= - =
Activate

Blocked/ ————=
Suspend ——————

Suspend

Blocked

Tl 3: Operating Systems and Computer Networks

3:23

Freie Universitit :

TS

Questions & Tasks

-What is a typical state for a typical program you use, such as e.g. text processing, email, chat etc.?
- S0 what is your computer normally doing (unless you are an active gamer...)?

-How do interrupts fit into the picture of processes, queues, scheduling?

-How and where to implement different priorities?

-What does swapping involve? Think of the memory hierarchy!
- Can you notice swapping?

-Can we swap all processes?

TI 111 - Operating Systems and Computer Networks

3.24

Freie Universitét (S) Berlin

Processes and Resource Allocation

Process state reflects allocated resources:

Running Blocked Ready/Suspended

| Virtual
: Memory
[}
___ Jmmmmmmmmmmmm———————-
: Computer
Y Resources
Main
Processor M
emory

—pp Required resource available

- = = P Required resource not available

Tl 3: Operating Systems and Computer Networks 3.25

ey,

Freie Universitat (.Sl
TR

Global data structures for processes and resources usage

Process tables: /O tables:

-Process Control Block (PCB) -Allocation of I/O devices, assignment to processes
-Location of process image in memory - State of current operation and corresponding memory
-Resources (process-specific view) region
Memory tables: File tables:

- Allocation of primary and secondary memory -Currently open files

-Protection attributes of blocks of (shared) memory -Location on storage media / secondary memory
-Virtual memory management - State and attributes

Tl 3: Operating Systems and Computer Networks 3.26

Freie Universitét]

Process Control Table and Image

Y d

Process P P Process
Image i i
| Memory Tables ge Identification
Procesq Processor State Process Control
Memory 1 Information Block
Devices | /O Tables Process Control
" Information
Files
; \
Processes —| File Tables \ User Stack
\
\
\
\ Private User
\ Address Space
Primary Process Table \ {Programs, Data)
| Process 1 \
\
Process 2 \
Process .
Process 3 image \\ Kernel Stack
——
Process 1 '
n 1 | |
1y Shared Address :
\ : 5]
pace i
\1 i
Process n ' '
U 1
4

Tl 3: Operating Systems and Computer Networks 3.27

Freie Universitit £

Kernel / Process Implementations

Separated kernel and processes:
-Separate memory and stack for kernel
-Kernel is no process
= Expensive and unsafe

‘..

Kernel

(a) Separate kernel

Tl 3: Operating Systems and Computer Networks 3.28

LR,

S
=

Freie Universitat E(1.S

Kernel / Process Implementations

Execution of system calls as part of user process, but in kernel mode:
-Kernel functions use same address space
-Same process switches into privileged mode (Ring 0)
=> Less expensive and quite safe

Pl I:)2 I:)n
oS oS O}
Funct Funck ¢ ©® ¢ Func}
tions tions tions

Process Switching Functions

(b) OS functions execute within user processes

Tl 3: Operating Systems and Computer Networks

A

?\Wé

3
ey
iy 33

329

Kernel / Process Implementations

Microkernel:
-Collection of system processes that provide OS services
= Quite expensive but very safe

P Po| ¢ o o Pn OS] ¢ o e O}

Process Switching Functions

(c) OS functions execute as separate processes

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.Sl
TR

ey,

3.30

Freie Universitat /LS 2

Questions & Tasks

-Make sure you understand how to implement tables, references to tables, pointers etc.!
-What is “expensive” when it comes to certain kernel/process implementations?
-What can be “unsafe”?

-Read e.g. https://www.oreilly.com/library/view/understanding-the-linux/0596002130/ch01s06.html to get more
insight! (Understanding the Linux Kernel, Daniel P. Bovet, Marco Cesati, O’'Reilly)

TI 111 - Operating Systems and Computer Networks &8l

https://www.oreilly.com/library/view/understanding-the-linux/0596002130/ch01s06.html

Example: UNIX — Architecture

Process architecture that executes kernel functions in the context of a user process

P1 P> Pn
oS (ON) (ON)
Func Func ¢« o o Func
tiong tiong tiong

‘ Process Switching Functions \

Two modes are used: user / kernel mode (Ring 3/Ring 0)
Two types of processes: system / user processes
=» System processes are implemented as part of kernel to run background services, e.g. swapping

Tl 3: Operating Systems and Computer Networks 3.32

Example:

UNIX — Process State Diagram

return
to user

User
Running

return

system call,
interrupt

interrupt.
interrupt return

Tl 3: Operating Systems and Computer Networks

fork
Created
FPreempted
. enough not enough memory
A b memory (swapping system only)
“\.
.
H
L
b
preempt “u A
swap out
reschedule Feady to Run ® Ready to Run
+
Kernel 4 4
Running
deep wakeup wakeup
exit
Asleep in swap out Sleep,
e Memory > Swapped

Freie Universitit

)&/ Berlin

3.33

Freie Universitat ({18

Example: UNIX — Process States

User Running
Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Lombie

Executing in user mode.
Executing in kernel mode.
FEeady to run as soon as the kernel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state)).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

Tl 3: Operating Systems and Computer Networks

¥ Berlin

3.34

Related System Calls

Int execve(const char *filename, char *const argv|[], char *const envp[])
-Executes program pointed to by f1lename with arguments argv and environment envp (in the form of
key=value)

- Effectively replaces the current program with another one
= exec() family of library function

pid t fork(void)

-Creates child process that differs from parent only in its PID (process identifier) and PPID (parent process
identifier)

-Returns 0 for child process and child’s PID for parent process

void _exit(int status)

-Terminates calling process; closes open file descriptors; children are adopted by process 1; signals termination
to parent
= ex1t() library function

pid t wart(int *status)

-Wait for state change in child of calling process

Tl 3: Operating Systems and Computer Networks 3.35

Freie Universitat k

Programming Example

#include <stdio.h>
#include <stdlib_.h>
#include <sys/wait.h>

id = fork();

f(pid == 0) {

printf(""Child process running...\n"");
// Do something...

printf(""Child process done.\n");
exit(123);

+
else 1f(pid > 0) {
printf("'Parent process, waiting for child %d..._.\n", pid);
pid = wairt(&status);
printf(""Child process %d terminated, status %d.\n", pid, WEXITSTATUS(status));
exit(EXIT_SUCCESS);

else {
printf(""fork() failed\n™);
exiTt(EXIT_FAILURE) ;

}
}

3.36

Tl 3: Operating Systems and Computer Networks

User-Level Process Control

Tl 3: Operating Systems and Computer Networks

!l "rii'ﬂl i ! @"i 'ﬂl “.‘-H i O a'lf: igl"i a"'rilal i “.\.ji d I.jjl ”;gl 5]

wittenbuGuiema:™5 ps

FID TTY TIME
19047 pt=s-1 00:00:00
19050 pts-1 00:00:00
19243 pt=s-1 00:00:00

CHD
czh
hash

PE

wittenbuBuiema:™5 kuord &

[11 19244
wittenbuGuiema:™5 ps
FID TTY TIME
19047 pt=s-1 00:00:00
19050 pts-1 00:00:00
19244 pt=s-1 00:00:01
19245 pt=s-1 00:00:00
wittenbuBuienma:"$ kill
wittenbuGuiema:™5 ps
FID TTY TIME
19047 pt=s-1 00:00:00
19050 pts-1 00:00:00
19246 pt=s-1 00:00:00
[11+ Killed
wittenbuBuienna:™5 |}

CHD

czh

hash
kword

ps

-9 19244

CHD
czh
hash

PE

Freie Universitat

3:37

TE Berlin

Freie Universitt a?gé
(e

e

User-Level Process Control

e 0o Activity Monitor (All Processes) ;_O BaB Microsoft PowerPoint (75735) |
@ Memory | Energy | Disk | Metwork J Q-) Parent Process: launchd (603} User: guenes (503)
Process Name | %CPU w| CPUTime Threads | Idle Wake Ups PID | User S i Microsoft PowerPoint
WindowServer 14,8 41:09,74 B 23 180 _window M % CPU: 8,68 Recent hangs: 0
EE Activity Monitor 7,2 8,04 5 0 76525 guenes — -
sysmond 4.0 20,04 3 1 210 root V2l Statistics | Open Files and Ports |
! Dock 2,6 16:59,24 12 4 621 guenes
VshieldScanManager 1,1 4:03:04,70 11 147 65 root Real Memory Size: 178,4 MB
kernel_task 0,9 1:11:38,36 104 213 0 root Virtual Memory Size: 1,36 GB
cma 0,8 23:58,24 20 49 330 root Shared Memory Size: 63,2 MB
VShieldScanner 0,8 14:09,20 3 1 402 root) .
Private Memory Size: 51,3 ME
VWShieldScanner 0,7 14:00,74 3 0 400 root
Microsoft PowerPoint 0,7 1:47,16 11 4 75735 guenes
W Mail 0,6 3:46,47 28 0 68888 guenes
V5hieldScanner 0,6 14:01,51 3 i} 401 root
4 SystemUIServer 0,5 35,17 10 1 622 guenes | Sample || Qui
pri_disp_service 0,5 17:54,57 18 1 444 root | |
@ Google Chrome 0,5 10:50,47 41 19 94061 guenes
launchservicesd 0,4 22,55] 0 51 root
coreservicesd 0.3 36,89 5 0 71 root
B Dashboard 0,3 8:47,49 13 1 1675 guenes
ﬁ, Finder 0,3 2:26,25 18 u] 623 guenes
System: 2,10% CFU LOAD Threads: 996
User: 420% Processes: 187
Idle: 9

Tl 3: Operating Systems and Computer Networks 3.38

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4, Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

3:39

	TI III: Operating Systems & Computer Networks �Processes
	Content
	Definitions of a Process
	Related Concepts to “Process”
	Program vs. Process
	Tasks of an OS concerning processes
	Process execution (Trace)
	Process execution (Trace)
	Questions & Tasks
	Simple Process Model
	Simple Process Model
	Process Control Block (PCB)
	Process Control Block (PCB)
	Reasons for Process Creation
	Process Termination
	Questions & Tasks
	Process Model
	Extended Process Model
	Process States over Time
	Implementation of Process States
	Improved Implementation
	Suspension / Swapping of Processes
	Extended Process State Diagram
	Questions & Tasks
	Processes and Resource Allocation
	Global data structures for processes and resources usage
	Process Control Table and Image
	Kernel / Process Implementations
	Kernel / Process Implementations
	Kernel / Process Implementations
	Questions & Tasks
	Example: UNIX – Architecture
	Example: UNIX – Process State Diagram
	Example: UNIX – Process States
	Related System Calls
	Programming Example
	User-Level Process Control
	User-Level Process Control
	Content

